Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Residual stresses and viscosity in the high-speed deformation of metals

  • 25 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    S. K. Godunov, Elements of the Mechanics of a Continuous Medium [in Russian], Nauka, Moscow (1978).

  2. 2.

    S. K. Godunov, A. A. Deribas, et al., “Investigation of the viscosity of metals under high-speed collisions,” Fiz. Goreniya Vzryva, No. 1 (1971).

  3. 3.

    N. S. Kozin and N. K. Kuz'mina, “Shock adiabats and weak shock profiles in metals,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1977).

  4. 4.

    S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Gasdynamic Problems [in Russian], Nauka, Moscow (1976).

  5. 5.

    N. N. Sergeev-Al'bov, Numerical Computation of Residual Stresses [in Russian], Preprint No. 212, Vychisl. Tsentr. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1980).

  6. 6.

    S, K. Godunov and N. N. Sergeev-Al'bov, “Equations of linear elasticity theory with point Maxwell sources of stress relaxation,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1977).

  7. 7.

    S. K. Godunov, A. F. Demchuk, et al., “Interpolation formulas for the dependence of the Maxwell viscosity,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1974).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 116–121, March–April, 1983.

The author is grateful to S. K. Godunov for formulating and discussing the problem.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sergeev-Al'bov, N.N. Residual stresses and viscosity in the high-speed deformation of metals. J Appl Mech Tech Phys 24, 242–248 (1983). https://doi.org/10.1007/BF00910695

Download citation

Keywords

  • Viscosity
  • Mathematical Modeling
  • Mechanical Engineer
  • Residual Stress
  • Industrial Mathematic