Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Critical conditions for microdamage initiation in a spalling metal

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    V. K. Golubev, S. A. Novikov, et al., “The effects of temperature on the critical spalling conditions for metals,” Zh. Prikl Mekh. Tekh, Fiz., No. 4 (1980).

  2. 2.

    L. Davison and R. A. Graham, “Shock compression of solids,” Phys. Rep.,55, No. 4 (1979).

  3. 3.

    Yu. V. Bat'kov and E. D. Vishnevetskii, “Apparatus for measuring pulsed pressures with piezoresistive transducers in the range 0.1–20 GPa,” in: Abstracts for the Second All-Union Symposium on Pulsed Pressures [in Russian], Izd. VNIIFTRI, Moscow (1976).

  4. 4.

    S. Cochran and D. Banner, “Spall studies in uranium,” J. Appl. Phys.,48, No. 7 (1977).

  5. 5.

    V. K. Golubev, S. A. Novikov, et al., “The spalling-failure mechanisms for St. 3 and 12Kh18N10T steels in the temperature range from 196 to 800°C,” Probl. Prochn., No. 5 (1981).

  6. 6.

    B. A. Tarasov, “The failure resistance in plates on shock loading,” Probl. Prochn., No. 3 (1974).

  7. 7.

    R. M. Schmidt, F. W. Davies, et al., “Temperature dependent spall threshold of four metal alloys,” J. Phys. Chem. Solids,39, No. 4 (1978).

  8. 8.

    J. H. Smith, “The low pressure spall threshold in copper,” in: Dynamic Behavior of Materials, ASTM, Philadelphia (1963).

  9. 9.

    A. L. Stevens and F. R. Tuler, “Effect of shock precompression on the dynamic fracture strength of 1020 steel and 6061-T6 aluminum,” J. Appl. Phys.,42, No. 13 (1971).

  10. 10.

    M. F. Ashby, C. Gandhi, and D. M. R. Taplin, “Fracture-mechanism maps and their construction for f.c.c. metals and alloys,” Acta Metall.,27, No. 3 (1979).

  11. 11.

    R. J. Fields, T. Weerasooriya, and M. F. Ashby, “Fracture mechanisms in pure iron, two austenitic steels, and one ferritic steel,” Met. Trans.,11A, No. 2 (1980).

  12. 12.

    D. J. Steinberg and R. W. Sharp, “Interpretation of shock-wave data for beryllium and uranium with an elastic-viscoplastic constitutive model,” J. Appl. Phys.,52, No. 8 (1981).

  13. 13.

    S. A. Novikov, I. I. Divnov, and A. G. Ivanov, “A study of the failure in steel, aluminum, and copper on explosive loading,” Fiz. Met. Metalloved.,21, No. 4 (1966).

  14. 14.

    G. I. Kanal' and V. V. Shcherban', “Plastic deformation and spalling in armco iron in shock waves,” Fiz. Goreniya Vzryva, No. 4 (1980).

  15. 15.

    C. S. Speight, P. F. Taylor, and A. A. Wallace, “Observations of spallation and attenuation effects in aluminium and beryllium from free-surface velocity measurements,” in: Metallurgical Effects at High Strain Rates, Plenum Press, New York-London (1973).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 151–158, July–August, 1983.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Golubev, V.K., Novikov, S.A., Sobolev, Y.S. et al. Critical conditions for microdamage initiation in a spalling metal. J Appl Mech Tech Phys 24, 586–592 (1983). https://doi.org/10.1007/BF00907913

Download citation

Keywords

  • Mathematical Modeling
  • Mechanical Engineer
  • Critical Condition
  • Industrial Mathematic
  • Microdamage Initiation