Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rotational degeneracy breaking of atomic substates: A composite quantum system in a noninertial reference frame

Abstract

The degenerate magnetic substates of a field-free atomic system are split in a rotating reference frame. The splitting and ordering of the states should be experimentally demonstrable by means of laser-induced quantum interference spectroscopy of hydrogenic Rydberg states. This would manifest dynamical consequences of a noninertial reference frame on theinternal structure of a composite quantum system-in contrast to the observed neutron Sagnac effect, which involves the relative phase of essentially point particles. The predicted level splitting is independent of constituent particle masses; a composite quantum system in a rotating reference frame exhibits effects inequivalent to those that would be engendered in an inertial frame by a gravitational field.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    McReynolds, A. W. (1951).Phys. Rev.,83, 172; Dabbs, J. W. T.,et al. (1965)Phys. Rev.,139, B756.

  2. 2.

    See, for example, Will, C. M. (1981).Theory and Experiment in Gravitational Physics (Cambridge University Press, New York), p. 16.

  3. 3.

    Werner, S. A., Staudenmann, J. L., and Colella, R. (1979).Phys. Rev. Lett.,42, 1103.

  4. 4.

    Staudenmann, J. L., Werner, S. A., Colella, R., and Overhauser, A. W. (1980).Phys. Rev. A,21, 1419.

  5. 5.

    Bonse, U., and Wroblewski, T. (1983).Phys. Rev. Lett.,51, 1401.

  6. 6.

    Atwood, D. K., Horne, M. A., Shull, C. G., and Arthur, J. (1984)Phys. Rev. Lett.,52, 1673.

  7. 7.

    In contemporary elementary particle theory the neutron is regarded as a triquark composite. In view of the facts that the constituents can never, in principle, be individually isolated (unlike the constituents of atoms) and that the internal degrees of freedom of the neutron are not excited in the WSC experiment the neutron is regarded here as a point particle.

  8. 8.

    See, for example, Fischback, E., and Freeman, B. S. (1981).Phys. Rev. D,23, 2157 and the references therein.

  9. 9.

    Colella, R., Overhauser, A. W., and Werner, S.A. (1975).Phys. Rev. Lett.,34, 1472.

  10. 10.

    Goldstein, H. (1980).Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, Mass.), p. 235.

  11. 11.

    Bethe, H. A., and Salpeter, E. E. (1957).Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin), p. 269.

  12. 12.

    Neukammer, J., Rinneberg, H., Vietzke, K., Konig, A., Hieronymus, H., Kohl, M., Grabka, H.-J., and Wunner, G. (1987).Phys. Rev. Lett.,59, 2947.

  13. 13.

    Beams, J. W. (1968).Phys. Rev. Lett.,21, 1093.

  14. 14.

    Silverman, M. P., Haroche, S., and Gross, M. (1978).Phys. Rev. A,18, 1507.

  15. 15.

    Single-photon excitation from the ground state would require a tunable UV laser; in an actual experiment, one would likely employ a sequential excitation by two tunable lasers with visible output, such as described by Silverman, M. P., Haroche, S., and Gross, M. (1978).Phys. Rev. A,18, 1517.

  16. 16.

    Haroche, S., Gross, M., and Silverman, M. P. (1974).Phys. Rev. Lett.,33, 1063.

  17. 17.

    Liboff, R. L. (1984).Phys. Today,37, 50.

  18. 18.

    White, H. E. (1934).Introduction to Atomic Spectra (McGraw-Hill, New York), p. 66; see also Kleppner, D. (1981).Phys. Rev. Lett.,47, 233.

  19. 19.

    Schiff, L. I. (1968).Quantum Mechanics, 3rd ed. (McGraw-Hill, New York), p. 443.

  20. 20.

    Goldstein, H. Ref. 10(, p. 178.

  21. 21.

    Longo, M. J. (1988).Phys. Rev. Lett.,60, 173; Krauss, L. M., and Tremaine, S. (1988). Phys. Rev. Lett.,60, 176.

  22. 22.

    Yang, K. (1976).Ann. Phys. (N.Y.),101, 62.

  23. 23.

    Silverman, M. P. (1984).Lett. Nuovo Cimento,41 509.

  24. 24.

    Konopinski, E. J. (1978).Am. J. Phys.,46, 499.

  25. 25.

    Peshkin, M. (1981).Phys. Rep.,80, 375.

Download references

Author information

Additional information

The original essay upon which this article is based received honorable mention from the Gravity Research Foundation for 1988.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silverman, M.P. Rotational degeneracy breaking of atomic substates: A composite quantum system in a noninertial reference frame. Gen Relat Gravit 21, 517–532 (1989). https://doi.org/10.1007/BF00904503

Download citation

Keywords

  • Reference Frame
  • Relative Phase
  • Gravitational Field
  • Particle Masse
  • Dynamical Consequence