Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Dependence of the electron drift velocity on the electrical field magnitude in GaxIn1−xAs, computed by the Monte Carlo method

  • 12 Accesses

Abstract

Dependences of the electron drift velocity on the electrical field magnitude have been computed by the Monte Carlo method in a solid GaxIn1−xAs solution for compositions with x=0, 0.2, 0.4, 0.6, 0.8, 1.0. A three-valley band structure is used in the computation, where a γ-L-X sequence of valleys is taken for GaAs. In influence of scattering in the alloy and of an ionized impurity on the dependence Vdr (E) is studied. It is shown that the composition Ga0.6In0.4As is optimal from the viewpoint of the Gunn effect, where it exceeds GaAs in its characteristics. It follows from the results of the computation that the reason for the appearance of NDC (negative differential conductivity) in GaxIn1−xAs for x=0.6 is non-parabolicity of the γ-valley.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    T. Sugino, M. Inoe, J. Shirafuji, and Y. Inuishi, Jpn. J. Appl. Phys.,15, No. 6, 991 (1976).

  2. 2.

    R. W. Conrad, P. L. Hoyt, and D. D. Martin, J. Electrochem. Soc.,114, 164 (1967).

  3. 3.

    Yu. M. Burdukov, O. V. Emel'yanenko, D. N. Nasledov, and A. V. Khalilov, Fiz. Tekh. Poluprovodn.,4, 1967 (1970).

  4. 4.

    T. Katoda, F. Osaka, and T. Sugino, Jpn. J. Appl. Phys.,13, 561 (1974).

  5. 5.

    M. Glicksman, R. E. Enstrom, S. A. Mittleman, and J. R. Appert, Phys. Rev.,B9, 1621 (1974).

  6. 6.

    J. W. Wagner, J. Electrochem. Soc.,117, 1193 (1970).

  7. 7.

    K. Takahashi, T. Moriizumi, and S. Shirose, J. Electrochem. Soc.,118, 1639 (1971).

  8. 8.

    Y. Takeda, A. Sasaki, Y. Imamura, and T. Takagi, J. Appl. Phys.,47, No. 12, 5405 (1976).

  9. 9.

    J. Baliga and S. K. Grandhi, J. Electrochem. Soc.,122, 683 (1975).

  10. 10.

    T. V. Dzhakhutashvili, A. A. Mirtskhulava, L. G. Sakvarelidze, A. L. Shkol'nik, and M. S. Matinova, Fiz. Tekh. Poluprovodn.,5, 222 (1971).

  11. 11.

    R. Sankaran, R. L. Moon, and G. A. Antyras, J. Cryst. Growth,33, 271 (1976).

  12. 12.

    M. Inoe, K. Ashida, T. Sugino, J. Shirafuji, and Y. Inuishi, Jpn. J. Appl. Phys.,12, 932 (1973).

  13. 13.

    A. V. Dyadchenko and é. D. Prokhorov, Radiotekh. élektron.,21, No. 12, 2641 (1976).

  14. 14.

    W. Fawcett, A. D. Boardman, and S. Swain, J. Phys. Chem. Solids,31, 1963 (1970).

  15. 15.

    W. Fawcett, C. Hilsum, and H. D. Rees, Electron. Lett.,5, 313 (1969).

  16. 16.

    M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, J. Appl. Phys.,48, No. 11, 4587 (1977).

  17. 17.

    S. Kratzer and J. Frey, J. Appl. Phys.,49, No. 7, 4064 (1978).

  18. 18.

    J. R. Hauser, M. A. Littlejohn, and T. H. Glisson, Appl. Phys. Lett.,28, No. 8, 458 (1976).

  19. 19.

    M. E. Levinshtein, Yu. K. Pozhela, and M. S. Shur, The Gunn Effect [in Russian], Sovet-skoe Radio, Moscow (1975).

  20. 20.

    J. R. Hauser, Appl. Phys. Lett.,33, No. 4, 351 (1978).

  21. 21.

    A. S. Popov and I. Y. Yanchev, Phys. Status Solidi,A41, 687 (1977).

  22. 22.

    F. Osaka, T. Sugano, Y. Okabe, and Y. Okada, Jpn. J. Appl. Phys.,15, No. 12, 2371 (1976).

  23. 23.

    L. Makowski and M. Glicksman, J. Phys. Chem. Solids,34, 487 (1973).

  24. 24.

    T. Nishinaga, O. Hori, and S. Uchiyama, J. Phys. Soc. Jpn.,41, No. 5, 1603 (1976).

  25. 25.

    L. Nordheim, Ann. Phys.,9, 607 (1931).

  26. 26.

    J. W. Harrison and J. R. Hauser, J. Appl. Phys.,47, 292 (1976).

  27. 27.

    J. W. Harrison and J. R. Hauser, Phys. Rev.,B9, 5347 (1976).

  28. 28.

    M. A. Littlejohn, J. R. Hauser, T. H. Glisson, D. K. Ferry, and J. W. Harrison, Solid State Electron.,21, No. 1, 107 (1978).

  29. 29.

    M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, Solid State Electron.,22, 487 (1979).

Download references

Author information

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 20–24, April, 1981.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karavaev, G.F., Chernyakhovskii, L.K., Azikov, B.S. et al. Dependence of the electron drift velocity on the electrical field magnitude in GaxIn1−xAs, computed by the Monte Carlo method. Soviet Physics Journal 24, 309–313 (1981). https://doi.org/10.1007/BF00898260

Download citation

Keywords

  • GaAs
  • Monte Carlo Method
  • Band Structure
  • Drift Velocity
  • Electron Drift