Soviet Physics Journal

, Volume 30, Issue 2, pp 100–104 | Cite as

Thermodynamic limit in a charged plasma in equilibrium

  • M. M. Shapiro
  • N. S. Golosov
Plasma Physics


We study the existence conditions for the thermodynamic limit in the chain of BBGKY equations for the equilibrium correlation functions of a charged plasma. It is shown that in order for the thermodynamic limit to exist the charge of the plasma cannot increase faster than the surface area of the plasma. When this condition is satisfied the equilibrium correlation functions of the charged plasma are asymptotically identical to the correlation functions of a neutral plasma in a self-consistent electrostatic field, which depends only on the one-particle correlation functions. For a plasma which is uniform everywhere except in a thin surface region, this field is found in explicit form. For a plasma occupying an infinite half-space, the problem is equivalent to a neutral plasma near a charged wall.


Correlation Function Explicit Form Surface Region Thermodynamic Limit Electrostatic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. R. Yukhnovskii, M. F. Golovko, and I. I. Kurylyak, Preprint ITF-77-97P, Kiev (1977).Google Scholar
  2. 2.
    I. R. Yukhnovskii, M. F. Golovko, and E. N. Sov'yak, Preprint ITF-82-159P, Kiev (1983).Google Scholar
  3. 3.
    I. P. Yakimenko, in: Problems in the Theory of Plasmas [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  4. 4.
    A. G. Zagorodnii, A. S. Usenko, and I. P. Yakimenko, Preprint ITF-82-83P, Kiev (1982).Google Scholar
  5. 5.
    D. Henderson and L. Blum, J. Chem. Phys.,69, 5441 (1978).Google Scholar
  6. 6.
    L. Blum, J. Phys. Chem.,81, 136 (1971).Google Scholar
  7. 7.
    D. Henderson and L. Blum, J. Chem. Phys.,74, 1902 (1981).Google Scholar
  8. 8.
    M. F. Golovko and O. A. Pizio, Preprint ITF-82-83P, Kiev (1982).Google Scholar
  9. 9.
    O. A. Pizio, Preprint ITF-83-131P, Kiev (1983).Google Scholar
  10. 10.
    C. Eckert, Theory of a Completely Ionized Plasma [Russian translation], Mir, Moscow (1974).Google Scholar
  11. 11.
    E. H. Lieb and I. L. Lebowits, Adv. Math.,9, 316 (1972).Google Scholar
  12. 12.
    I. Z. Fisher, Statistical Theory of Liquids [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  13. 13.
    N. N. Bogolyubov, Problems of Dynamical Theory in Statistical Physics [in Russian], (3 Vols.), Naukova Dumka, Kiev (1970); Vol. 2, pp. 99–196.Google Scholar
  14. 14.
    I. Z. Fisher and B. V. Bokut, Zh. Fiz. Khim.,30, 2547 (1956).Google Scholar
  15. 15.
    S. Ono and S. Kondo, Molecular Theory of Surface Tension in Liquids, Springer-Verlag, Berlin (1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • M. M. Shapiro
    • 1
  • N. S. Golosov
    • 1
  1. 1.Institute of High-Current ElectronicsTomsk State UniversityUSSR

Personalised recommendations