Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mathematical apparatus of expanded 3 × 3 matrices to describe noncentered optical systems

  • 17 Accesses

Abstract

A simple mathematical apparatus is proposed to describe noncentered optical systems. The apparatus can be used to describe optical systems with isotropic elements or anisotropic elements with coincident principal directions. The approach proposed permits substantial expansion of the circle of problems that can be solved effectively within the framework of the geometric optics representations.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    E. O'Neil, Introduction to Statistical Optics [Russian translation], Mir, Moscow (1966).

  2. 2.

    A. Gerard and J. M. Birch, Introduction to Matrix Optics [Russian translation], Mir, Moscow (1978).

  3. 3.

    B. Magukov and H. H. Arsenault, J. Opt. Soc. Am.,73, No. 10, 1360–1366 (1983).

  4. 4.

    S. A. Rodionov, Opt. Spektrosk.,50, No. 5, 969–976 (1981).

  5. 5.

    Yu. A. Kravtsov and Yu. I. Orlov, Geometric Optics of Inhomogeneous Media [in Russian], Nauka, Moscow (1980).

  6. 6.

    M. M. Gorshkov, Ellipsometry [in Russian], Sovetskoe Radio, Moscow (1974).

  7. 7.

    O. N. Litvinenko, Principles of Radio Optics [in Russian], Tekhnika, Kiev (1974).

Download references

Author information

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 106–109, June, 1988.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Volkov, V.M. Mathematical apparatus of expanded 3 × 3 matrices to describe noncentered optical systems. Soviet Physics Journal 31, 517–519 (1988). https://doi.org/10.1007/BF00897621

Download citation

Keywords

  • Optical System
  • Principal Direction
  • Geometric Optic
  • Isotropic Element
  • Mathematical Apparatus