Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Equations of motion of a black hole in the quasistationary approximation

Abstract

The motion of a black hole subject to external influences as observed by a distant observer is considered. Zerilli's equations are used to find the displacement of the black hole and the structure of the metric in the presence of other gravitating bodies. It is shown that in a region in which the curvature of space is small the contribution of the field of the accelerated black hole has the same form as the field of an ordinary body and that the motion of the black hole in the quasistationary approximation takes place in accordance with the laws of Newtonian dynamics.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    A. P. Laitman, R. A. Syunyaev, N. I. Shakura, S. L. Shapiro, and D. M. Érdli, Usp. Fiz. Nauk,126, 515 (1978).

  2. 2.

    M. Demianski and L. Grishchuk, GRG,5, 673 (1974).

  3. 3.

    P. D'Eath, Phys. Rev. D,12, 2189 (1975).

  4. 4.

    S. L. Galkin, Dokl. Akad. Nauk SSSR,223, 827 (1975).

  5. 5.

    S. L. Galkin, in: New Results in the Theory of Relativity and Gravitation [in Russian], Nauka, Moscow (1977), pp. 43–48.

  6. 6.

    V. A. Fock, The Theory of Space, Time and Gravitation, Oxford (1964).

  7. 7.

    L. Infeld and J. Plebánski, Motion and Relativity, Oxford (1960); see also A. Einstein and J. Grommer, Sitzungsber preuss. Akad. Wiss., phys.-math. Kl., pp.2–13 (1927); A. Einstein, Sitzungsber. preuss. Akad. Wiss., phys.-math. Kl., pp. 35–245 (1927); A. Einstein, Sitzungsber. preuss. Akad. Wiss., phys.-math. Kl., pp. 2–7 (1929).

  8. 8.

    N. V. Matskevich and A. A. Garcia Dias, Preprint 71–23R [in Russian], Institute of Theoretical Physics, Kiev (1971).

  9. 9.

    Yu. S. Vladimirov, Doctoral Dissertation [in Russian], Moscow (1974).

  10. 10.

    F. Zerilli, Phys. Rev. D,2, 2141 (1970).

  11. 11.

    R. H. Price, Phys. Rev. D,5, 2419 (1973).

Download references

Author information

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 22–26, November, 1980.

We thank Professor K. A. Piragas for interest In the work and helpful discussions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhdanov, V.I., Shtelen', V.M. Equations of motion of a black hole in the quasistationary approximation. Soviet Physics Journal 23, 929–932 (1980). https://doi.org/10.1007/BF00896160

Download citation

Keywords

  • Black Hole
  • External Influence
  • Distant Observer
  • Quasistationary Approximation
  • Newtonian Dynamic