Soviet Physics Journal

, Volume 20, Issue 1, pp 9–12 | Cite as

Wave function of an electron in a magnetic field in the rotator approximation

  • B. V. Kholomai


The electron wave function is determined for the case in which only the orbital moment of the electron is quantized. It is shown that the radiation quantum corrections calculated on the basis of the resulting wave functions coincide, through squared terms in ħ, with the corresponding corrections obtained from the exact wave functions for an electron in a homogeneous magnetic field.


Radiation Magnetic Field Wave Function Quantum Correction Electron Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. A. Sokolov and I. N. Ternov (editors), Synchrotron Radiation [in Russian], Nauka, Moscow (1966).Google Scholar
  2. 2.
    L. V. Iogansen, Zh. Eksp. Teor. Fiz.,36, 313 (1959).Google Scholar
  3. 3.
    A. V. Borisov and A. A. Matyukhin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9 (1975).Google Scholar
  4. 4.
    A. A. Sokolov and I. M. Ternov, Dokl. Akad. Nauk SSSR,153, 1053 (1963).Google Scholar
  5. 5.
    D. D. Ivanenko and A. A. Sokolov, Classical Field Theory [in Russian].Google Scholar
  6. 6.
    B. V. Kholomai and V. Ch. Zhukovskii, Vestn. Mosk. Gos. Univ., Fiz., No. 1 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • B. V. Kholomai
    • 1
  1. 1.Moscow Power Engineering InstituteUSSR

Personalised recommendations