Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Solution of contact problems of elasticity theory for an anisotropic body by the method of similarity

  • 51 Accesses

  • 6 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    V. I. Arnol'd, Ordinary Differential Equations [in Russian], Nauka, Moscow (1984).

  2. 2.

    F. M. Borodich, “Similarity in the problem of elastic body contact,” Prikl. Mat. Mekh.,47, No. 3, 519–521 (1983).

  3. 3.

    F. M. Borodich, “On the contact problem of two preliminarily distorted half-spaces,” Prikl. Mekh. Tekh. Fiz., No. 2, 160–162 (1984).

  4. 4.

    B. A. Galanov, “On an approximate solution of certain problems of elastic contact between two bodies,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5, 61–67 (1981).

  5. 5.

    L. A. Galin, Contact Problems of Elasticity Theory [in Russian], Gostekhizdat, Moscow-Leningrad (1953).

  6. 6.

    N. A. Kil'chevskii, Dynamic Contact Compression of Solid Bodies. Impact [in Russian], Naukova Dumka, Kiev (1976).

  7. 7.

    V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. Burchuladze, Three-Dimensional Problems of Mathematical Elasticity Theory and Thermoelasticity [in Russian], Nauka, Moscow (1976).

  8. 8.

    A. I. Lur'e, “Certain contact problems of elasticity theory,” Prikl. Mat. Mekh.,5, No. 3, 383–408 (1941).

  9. 9.

    A. Love, Mathematical Theory of Elasticity [Russian translation], Gostekhizdat, Moscow-Leningrad (1935).

  10. 10.

    L. V. Ovsyannikov, Group Properties of Differential Equations [in Russian], Nauka, Moscow (1978).

  11. 11.

    Yu. N. Rabotnov, Mechanics of a Deformable Solid Body [in Russian], Nauka, Moscow (1979).

  12. 12.

    V. A. Sveklo, “Effect of a stamp on an elastic anisotropic half-space,” Prik. Mat. Mekh.,34, No. 1, 172–178 (1970).

  13. 13.

    V. A. Sveklo, “Hertz problem about the compression of anisotropic bodies,” Prikl. Mat. Mekh.,38, No. 6, 1079–1083 (1974).

  14. 14.

    I. Ya. Shtaerman, Contact Problem of Elasticity Theory [in Russian], Gostekhizdat, Moscow-Leningrad (1949).

  15. 15.

    H. D. Conway, K. A. Farnham, and T. C. Ku, “The indentation of a transversely isotropic half-space by a rigid sphere,” Trans. ASME, J. Appl. Mech.,E34, No. 2, 491–492 (1967).

  16. 16.

    H. Hertz, “Über die Berührung fester elastischer Körper,” Ges. Werke, Vol. 1, 155–173, Leipzig (1894).

  17. 17.

    A. E. Love, “Boussinesq problem for a rigid cone,” Q. J. Math., Oxford Ser.,10, No. 39, 161–179 (1939).

  18. 18.

    J. R. Willis, “Hertzian contact of anisotropic bodies,” J. Mech. Phys. Solids,14, No. 3, 163–176 (1966).

Download references

Additional information

Moscow Institute of Radio Engineering, Electronics, and Automation. Translated from Prikladnaya Mekhanika, Vol. 26, No. 7, pp. 17–23, July, 1990.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borodich, F.M. Solution of contact problems of elasticity theory for an anisotropic body by the method of similarity. Soviet Applied Mechanics 26, 631–636 (1990). https://doi.org/10.1007/BF00889399

Download citation


  • Contact Problem
  • Elasticity Theory
  • Anisotropic Body