Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Random parametric oscillations of elastic systems with hysteresis energy dissipation

  • 23 Accesses

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    V. O. Kononenko and M. A. Pavlovskii, “Effect of imperfect armature elasticity on the spatial oscillation amplitude of a solid,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 6, 5–12 (1976).

  2. 2.

    V. M. Kuz'ma, Prikl. Mekh.,10, No. 3, 310–315 (1964).

  3. 3.

    V. M. Kuz'ma, “Dynamic instability of random oscillations of a bar,” Prikl. Mekh.,11, No. 6, 122–124 (1966).

  4. 4.

    A. S. Markina, “Coupled oscillations of mechanical systems with random, excitations,” Prikl. Mekh., No. 3, 64–70 (1974).

  5. 5.

    M. A. Pavlovskii and L. M. Ryzhkov, “Equivalent linearization in solving oscillation problems of mechanical systems with hysteresis,” Probl. Prochn., No. 4, 106–109 (1987).

  6. 6.

    L. M. Ryzhkov, “System oscillations with hysteresis energy dissipation during random excitation,” Dokl. Akad. Nauk UkrSSR, Ser. A, No. 5, 41–44 (1983).

Download references

Additional information

Kiev Polytechnic Institute. Translated from Prikladnaya Mekhanika, Vol. 26, No. 9, pp. 95–101, September, 1990.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pavlovskii, M.A., Ryzhkov, L.M. Random parametric oscillations of elastic systems with hysteresis energy dissipation. Soviet Applied Mechanics 26, 890–895 (1990). https://doi.org/10.1007/BF00888776

Download citation


  • Energy Dissipation
  • Parametric Oscillation
  • Elastic System
  • Hysteresis Energy
  • Hysteresis Energy Dissipation