Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Elastic equilibrium of transversally isotropic hollow cylinders of finite dimension with circumferential notches

  • 15 Accesses

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    A. A. Babloyan, “Axisymmetric deformation of a circular cylinder of finite length made of a transversally isotropic material,” Izv. Akad. Nauk ArmSSR, Ser. Fiz.-Mat. Nauk,14, No. 4, 61–70 (1961).

  2. 2.

    N. M. Bloshko, “Stress state of a transversally isotropic corrugated cylinder of finite dimensions,” Prikl. Mekh.,19, No. 12, 38–43 (1983).

  3. 3.

    N. M. Bloshko and Yu. N. Nemish, “Elastic equilibrium of transversally isotropic cylinders with perturbed lateral surfaces,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 93–99 (1984).

  4. 4.

    V. T. Grinchenko, Equilibrium and Steady Oscillations of Elastic Bodies of Finite Dimensions [in Russian], Naukova Dumka, Kiev (1978).

  5. 5.

    A. N. Guz' and Yu. N. Nemish, Perturbation Methods in Three-Dimensional Problems of the Theory of Elasticity [in Russian], Vishcha Shkola, Kiev (1982).

  6. 6.

    A. N. Guz' and Yu. N. Nemish, The Statics of Elastic Bodies of Non-Standard Form [in Russian], Naukova Dumka, Kiev (1984). (Three-Dimensional Problems of the Theory of Elasticity and Plasticity, Vol. 2).

  7. 7.

    S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, San Francisco (1963).

  8. 8.

    Yu. N. Nemish and N. M. Bloshko, “Investigation of the elastic equilibrium of corrugated cylinders of finite dimensions,” Prikl. Mekh.,19, No. 5, 16–23 (1983).

  9. 9.

    Yu. N. Nemish and D. I. Chernopiskii, The Elastic Equilibrium of Corrugated Bodies of [in Russian], Naukova Dumka, Kiev (1983).

  10. 10.

    M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, Nat. Bureau of Standards, Washington (1964).

  11. 11.

    Yu. N. Nemish, Yu. I. Vologzhaninov, A. I. Zirka, N. M. Bloshko, D. I. Chernopiskii, “Theoretical and experimental investigations of the stress state of hollow cylinders with annular notches,” Prikl. Mekh.,20, No. 4, 18–22 (1984).

  12. 12.

    G. Khantington, “The elastic constic constants of crystals”, Usp. Fiz. Nauk,74, No. 3, 462–520 (1961)

  13. 13.

    H. A. Elliot, “Three-dimensional stress distributions in hexagonal aelotropic crystals,” Proc. Cambridge Philos. Soc.,44, No. 4, 522–533 (1948).

Download references

Additional information

Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Prikladnaya Mekhanika, Vol. 21, No. 11, pp. 24–31, November, 1985.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nemish, Y.N., Bloshko, N.M. Elastic equilibrium of transversally isotropic hollow cylinders of finite dimension with circumferential notches. Soviet Applied Mechanics 21, 1041–1047 (1985). https://doi.org/10.1007/BF00888034

Download citation

Keywords

  • Hollow Cylinder
  • Finite Dimension
  • Elastic Equilibrium
  • Circumferential Notch
  • Isotropic Hollow Cylinder