Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Complex motion of mechanical systems and the computational process

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    V. M. Alekseev, Symbolic Dynamics. Eleventh Mathematical School [in Russian], Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, Kiev (1979).

  2. 2.

    V. M. Alekseev, “Quasi-random dynamic systems” Mat. Sb.,79, No. 1, 72–134 (1968).

  3. 3.

    N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators [in Russian], Gostekhizdat, Moscow-Leningrad (1950).

  4. 4.

    R. Bowen, Methods of Symbolic Dynamics [Russian translation], Mir, Moscow (1979).

  5. 5.

    V. F. Zadorozhnyi, “Synthesis of optimal speed of dynamic controllable systems” Mat. Fiz., No. 22, 3–11 (1980).

  6. 6.

    V. I. Zubov, Theory of Vibrations [in Russian], Vysshaya Shkola, Moscow (1979).

  7. 7.

    V. I. Zubov, Stability of Motion [in Russian], Vysshaya Shkola, Moscow (1973).

  8. 8.

    A. A. Martynyuk, Stability of Motion of Complex Systems [in Russian], Naukova Dumka, Kiev (1975).

  9. 9.

    I. G. Petrovskii, Readings in the Theory of Integral Equations [in Russian], Nauka, Moscow (1965).

  10. 10.

    Ya. G. Sinaya (ed.), Strange Attractors [Russian translation], Mir, Moscow (1981).

  11. 11.

    P. Khalmash and V. Sanders, Finite Integral Operators in Space L2 [Russian translation], Nauka, Moscow (1988).

  12. 12.

    C. Cercignani, Mathematical Methods in Kinetic Theory, Plenum Pub., New York (1969).

  13. 13.

    P. Martin-Lof, “Definition of random sequences,” Inf. Control, No. 9, 602–619 (1960).

Download references

Additional information

Institute of Cybernetics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Prikladnaya Mekhanika, Vol. 27, No. 9, pp. 106–114, September, 1991.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zadorozhnyi, V.F., Shevchenko, A.V. Complex motion of mechanical systems and the computational process. Soviet Applied Mechanics 27, 916–923 (1991). https://doi.org/10.1007/BF00887986

Download citation

Keywords

  • Mechanical System
  • Computational Process
  • Complex Motion