Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The method of vector eigenfunctions in three-dimensional problems of elasticity theory

This is a preview of subscription content, log in to check access.

References

  1. 1.

    B. L. Abramyan, “The problem of axisymmetric straining of a circular cylinder,” DAN ArmsSR, vol. 19, no. 1, 1954.

  2. 2.

    B. L. Abramyan and A. Ya. Aleksandrov, “Axisymmetric problems of the theory of elasticity,” in: Mechanics of Solids. Proceedings of the Second All-Union Congress on Mechanics [in Russian], Izd-vo Nauka, Moscow, 1966.

  3. 3.

    A. Ya. Aleksandrov, “Some relationships between the solutions of the plane and axisymmetric problems of elasticity theory for an infinite slab,” DAN SSSR, vol. 128, no. 1, 1959.

  4. 4.

    A. Ya. Aleksandrov and Yu. I. Solov'ev, “One mode of solution of three-dimensional problems of elasticity theory with the aid of functions of a complex variable,” Prikl. matem. i mekh. vol. 26, no. 1, 1962.

  5. 5.

    N. A. Belova and Ya. S. Uflyand, “The Dirichlet problem for a toroidal segment,” Prikl. matem. i mekh., vol. 31, no. 1, 1967.

  6. 6.

    G. M. Valov, “The first fundamental problem of elasticity theory for a rectangular parallelepiped,” Prikl. matem. i mekh., vol. 30, no. 6, 1966.

  7. 7.

    T. V. Vilenskaya and I. I. Vorovich, “The asymptotic behavior of the solution of a problem of elasticity theory for a thin spherical shell,” Prikl. matem. i mekh., vol. 30, no. 2, 1966.

  8. 8.

    I. I. Vorovich, “Some mathematical problems of the theory of plates and shells,” Mechanics of Solids. Proceedings of the Second Congress on Mechanics [in Russian], Izd-vo Nauka, Moscow, 1966.

  9. 9.

    I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, The Representations of a Rotation Group and a Lorentz Group [in Russian], Fizmatgiz, Moscow, 1958.

  10. 10.

    E. W. Hobson, The Theory of Spherical and Ellipsoidal Functions [Russian translation], IL, Moscow 1952.

  11. 11.

    G. A. Grinberg, Selected Problems of the Mathematical Theory of Electric and Magnetic Effects [in Russian], Izd-vo AN SSSR, Moscow, 1948.

  12. 12.

    V. T. Grinchenko, “The axisymmetric problem of elasticity theory for a semiinfinite circular cylinder,” Prikladnaya mekhanika, vol. 1, no. 1, 1965.

  13. 13.

    A. D. Kovalenko, Introduction to Thermoelasticity [in Russian], Izd-vo Naukova dumka, Kiev, 1965.

  14. 14.

    N. N. Lebedev and I. P. Skal'skaya, “Some boundary value problems of mathematical physics and elasticity theory for a single-cavity hyperboloid of revolution,” Prikl. matem. i mekh., vol. 30, no. 5, 1966.

  15. 15.

    N. N. Lebedev, I. P. Skal'skaya, and Ya. S. Uflyand, A Collection of Problems in Mathematical Physics [in Russian], GITTL, Moscow, 1955.

  16. 16.

    A. I. Lur'e, Three-Dimensional Problems of Elasticity Theory [in Russian], GITTL, Moscow, 1955.

  17. 17.

    Ph. Morse and H. Feshbach, Methods of Theoretical Physics [Russian translation], IL, Moscow, vol. 1, 1958; vol. 2, 1960.

  18. 18.

    N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity [in Russian], Izd-vo Nauka, Moscow, 1966.

  19. 19.

    H. Neuber, Stress Concentrations [Russian translation], Gostekhizdat, Moscow, 1947.

  20. 20.

    P. F. Papkovich, The Theory of Elasticity [in Russian], Oborongiz, Moscow, 1939.

  21. 21.

    G. I. Petrashen, “Dynamic problems of elasticity theory in the case of an isotropic sphere,” Uch. zap. Leningr. gos. un-ta, no. 21, 1950.

  22. 22.

    Yu. N. Podil'chuk, “Deformation of an axisymmetrically loaded spheroid,” Prikladnaya mekhanika, vol. 1, no. 6, 1965.

  23. 23.

    H. M. Polozhii, “The method of p-analytic functions of the axisymmetric theory of elasticity, Nauk. Shchorichnyk KDU, 1956.

  24. 24.

    G. N. Polozhii, A Generalization of the Theory of Analytic Functions of a Complex Variable [in Russian], Izd-vo Kievskogo un-ta, 1965.

  25. 25.

    G. Ya. Popov and N. A. Rostovtsev, “Contact (mixed) problems of the theory of elasticity,” Mechanics of Solids. Proceedings of the Second All-Union Congress on Mechanics [in Russian], Izd-vo Nauka, Moscow, 1966.

  26. 26.

    V. K. Prokopov, “Equilibrium of an elastic axisymmetrically loaded thick-walled cylinder,” Prikl. matem. i mekh., vol. 13, no. 2, 1949.

  27. 27.

    V. K. Prokopov, “Homogeneous solutions of elasticity theory and their applications in thin shell theory,” Mechanics of Solids. Proceedings of the Second All-Union Congress on Mechanics [in Russian], Izd-vo Nauka, Moscow, 1966.

  28. 28.

    G. N. Śavin, Stress Concentrations near Holes [in Russian], GITTL, Moscow, 1951.

  29. 29.

    K. V. Solyanik-Krass, “Solution of an axisymmetric problem in elliptical coordinates,” Trudy Leningr. politekhn. in-ta, no. 195, 1958.

  30. 30.

    K. V. Solyanik-Krassa, “Axisymmetric straining of cones,” Inzhenernyi zhurnal, vol. 2, no. 3, 1962.

  31. 31.

    V. A. Steklov, “The equilibrium of elastic solids of revolution,” Soob. Khar'kovskogo matem. ob-va, seriya 2, vol. 3, no. 4, 1892.

  32. 32.

    E. C. Titchmarsh, Expansions in Eigenfunctions Associated With Second-Order Differential Equations [Russian translation], IL, Moscow, 1960.

  33. 33.

    A. T. Ulitko, “The basic problem of equilibrium of an elastic cone,” Prikladna mekhanika, vol. 6, no. 3, 1960.

  34. 34.

    A. F. Ulitko, “Solution of certain problems of three-dimensional elasticity theory by the method of vector eigenfunctions,” Prikladna mekhanika, vol. 6, no. 4, 1960.

  35. 35.

    A. F. Ulitko, “The representation of functions in the form of an integral in associated Legendre polynomials of the second kind\(Qn\mathop - \limits^{(i\tau )} {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}^{(ch\xi )} \),” collection: First [Ukrainian] Republic Conference of Young Mathematics Researchers, No. 1 [in Russian], Izd-vo AN UkrSSR, Kiev, 1965.

  36. 36.

    A. F. Ulitko, “A generalization of the Mehler-Fock integral transform,” Prikladnaya mekhanika, vol. 3 no. 5, 1967.

  37. 37.

    Ya. S. Uflyand, Integral Transforms in Problems of Elasticity Theory [in Russian], Izd-vo AN SSSR, Moscow-Leningrad, 1963.

  38. 38.

    G. Aquaro, “Sul calcolo deformazioni di uno strato sferico elastiko,” Atti dell'Accad. Naz. dei Lincei, vol. 7.2 sem., 1949.

  39. 39.

    J. Dougall, “An analytical theory of the equilibrium of an isotropic elastic plate,” Trans. Roy. Soc., vol. 41, 1904.

  40. 40.

    J. Dougall, “An analytical theory of the equilibrium of an isotropic elastic rod of circular section,” Trans. Roy. Soc., Edinburgh, p. 4, 49, no. 16, 1914.

  41. 41.

    S. Kaliski, “The three-dimensional dynamic problem of a cylinder of finite length,” Arch. mech. stosow., vol. 12, no. 1, 1960.

  42. 42.

    G. Lamé, “Leçons sur les coordinnees curvilignes et leurs diverses applications,” Paris, 1859.

  43. 43.

    K. Marquerre, “Ansätze zur Lösung der Grundgleichungen der Elastizitätstheorie,” ZAMM, vol. 35, no. 6/7, 1955.

  44. 44.

    T. P. Mitchell and J. A. Weese, “Stress-distributions analyzed in bispherical coordinates,” J. Appl. Mech., vol. 27, no. 4, 1960.

  45. 45.

    H. Miyamoto, “Present status of the research on the three dimensional theory of elasticity,” Rev. Japan Sci. Mech. and Elect. Engin., 1957.

  46. 46.

    A. Morgan, “Stress distributions within solids bounded by one or two cones,” ZAMP, vol. 7, no. 2, 1956.

  47. 47.

    R. Muki, “On the axisymmetric problem of elasticity theory for a region bounded by two spheroidal surfaces,” Proc. 4-th Japan Nat. Congr. Appl. Mech., 1954 (1955).

  48. 48.

    D. Naylor, “On a finite Lebedev Transform,” J. of Math. and Mech., vol. 12, no. 3, 1963.

  49. 49.

    L. Pochhammer, “Beitrag zur Theorie der Biegung des Kreiszylinders,” Crell's Journ., Bd. 81, 1876.

  50. 50.

    E. Sternberg, “Three-dimensional stress concentrations in the theory of elasticity,” Appl. Mech. Rev., vol. 11, no. 1, 1958.

  51. 51.

    E. Sternberg and M. A. Sadowsky, “On the axisymmetric problem of the theory of elasticity for an infinite region containing two spherical cavities,” J. Appl. Mech., vol. 19, no. 1, 1952.

  52. 52.

    P. P. Teodorescu, “Sur le problème du parallélépipède élastique,” Arch. mech. stosow., vol. 12, 1960.

  53. 53.

    W. Thomson, “Dynamical problems regarding elastic spheroidal shells and spheroids of incompressible liquid,” Math. and Phys. Papers, vol. 3, 1890.

  54. 54.

    A. Wangerin, “Über das Problem des Gleichgewichts elasticher Rotationskörper,” Archiv der Math. and Phys., vol. 55, No. 2, 1873.

Download references

Author information

Additional information

Prikladnaya Mekhanika, Vol. 3, No. 9, pp. 1–11, 1967

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ulitko, A.F. The method of vector eigenfunctions in three-dimensional problems of elasticity theory. Soviet Applied Mechanics 3, 1–7 (1967). https://doi.org/10.1007/BF00886379

Download citation

Keywords

  • Elasticity Theory
  • Vector Eigenfunctions