Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nonlinear oscillations of mechanical systems

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations, Hindustan Publ. Corp. (1961).

  2. 2.

    M. M. Vainberg and V. A. Trenogin, Theory of Solution Branching of Nonlinear Equations [in Russian], Nauka, Moscow (1969).

  3. 3.

    H. Kauderer, Nonlinear Mechanics [in German], Springer, Berlin (1958).

  4. 4.

    M. A. Krasnosel'skii and P. P. Zabreiko, Geometric Methods of Nonlinear Analysis [in Russian], Nauka, Moscow (1975).

  5. 5.

    V. A. Pliss, Nonlocal Problems of the Theory of Oscillations, Academic Press, New York (1966).

  6. 6.

    E. P. Popov, Applied Theory of Control Processes in Nonlinear Systems [in Russian], Nauka, Moscow (1973).

  7. 7.

    H. Poincaré, Selected Works [Russian translation], Vol. I, 771, Nauka, Moscow (1971).

  8. 8.

    A. M. Samoilenko and N. I. Ronto, Numerical-Analytical Methods of Studying Periodic Solutions [in Russian], Vischa Shkola, Kiev (1976).

  9. 9.

    J. K. Hale, Oscillations in Nonlinear Systems, McGraw-Hill, New York (1963).

  10. 10.

    M. Urabe and A. Reiter, “Numerical computation of nonlinear forced oscillations by Galerkin's procedure,” J. Math. Anal. Appl.14, No. 5, 173 (1966).

Download references

Additional information

Kiev Institute of Structural Engineering. Translated from Prikladnaya Mekhanika, Vol. 17, No. 10, pp. 93–99, October, 1981.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borisenko, V.G., Gulyaev, V.I. & Dekhtyaryuk, E.S. Nonlinear oscillations of mechanical systems. Soviet Applied Mechanics 17, 932–937 (1981).

Download citation


  • Mechanical System
  • Nonlinear Oscillation