Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Theory of cracks in elastic bodies with initial stresses (cleavage problem)

  • 21 Accesses

  • 4 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    G. I. Barenblatt, “On equilibrium cracks being formed during brittle fracture. Rectilinear cracks in flat plates,” Prikl. Mat. Mekh.,23, No. 4, 706–721 (1959).

  2. 2.

    G. I. Barenblatt and G. P. Cherepanov, “On the cleavage of brittle bodies,” Prikl. Mat. Mekh.,24, No. 4, 667–682 (1960).

  3. 3.

    G. I. Barenblatt and G. P. Cherepanov, “On equilibrium and crack propagation in an anisotropic medium,” Prikl. Mat. Mekh.,25, No. 1, 46–55 (1961).

  4. 4.

    L. A. Galin, Contact Problems of Elasticity Theory [in Russian], Gostekhizdat, Moscow (1953).

  5. 5.

    A. N. Guz', Stability of Elastic Bodies under Finite Deformations [in Russian], Naukova Dumka, Kiev (1973).

  6. 6.

    A. N. Guz', Stability of Elastic Bodies under Multilateral Compression [in Russian], Naukova Dumka, Kiev (1979).

  7. 7.

    A. N. Guz', “On the linearized theory of the fracture of brittle bodies with initial stresses,” Dokl. Akad. Nauk SSSR,286, No. 3, 1031–1034 (1980).

  8. 8.

    A. N. Guz', “Complex potentials of the plane linearized problem of the theory of elasticity (compressible bodies),” Prikl. Mekh.,16, No. 5, 72–83 (1980).

  9. 9.

    A. N. Guz', “Complex potentials of the plane linearized problem of elasticity theory (incompressible bodies),” Prikl. Mekh.,16, No. 6, 64–70 (1980).

  10. 10.

    A. N. Guz' “Contact problems of elasticity theory for a half-plane with initial stresses,” Prikl. Mekh.,16, No. 8, 48–58 (1980).

  11. 11.

    A. N. Guz' “On complex potentials of the plane linearized problem of elasticity theory,” Prikl. Mekh.,16, No. 9, 83–97 (1980).

  12. 12.

    A. N. Guz', “Theory of cracks in elastic bodies with initial stresses (formulation of the problems, separation cracks),” Prikl. Mekh.,16, No. 12, 3–14 (1960).

  13. 13.

    A. N. Guz' “Theory of cracks in elastic bodies with initial stresses (shear cracks, limit cases),” Prikl. Mekh.,17, No. 1, 3–13 (1981).

  14. 14.

    A. N. Guz', “Theory of cracks in elastic bodies with initial stresses (highly resilient materials),” Prikl. Mekh.,17, No. 2, 3–14 (1981).

  15. 15.

    A. N. Guz', “Theory of cracks in elastic bodies with initial stresses (rigid materials),” Prikl. Mekh.,17, No. 4, 100–106 (1981).

  16. 16.

    M. V. Keldysh and L. I. Sedov, “Effective solution of certain boundary value problems for harmonic functions” Dokl. Akad. Nauk SSSR,16, No. 1 7–10 (1937).

  17. 17.

    N. I. Muskhelishvili, Some Fundamental Problems of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).

  18. 18.

    B. A. Drozdovskii (editor), Applied Questions of Fracture Viscosity [Russian translation], Mir, Moscow (1968),

  19. 19.

    Development of the Theory of Contact Problems in the USSR [in Russian], Nauka, Moscow (1976).

  20. 20.

    L. I. Sedov, Mechanics of Continuous Media [in Russian], Vol. 2, Nauka, Moscow (1976).

  21. 21.

    G. P. Cherepanov, “Solution of a linear Riemann boundary value problem and its application to certain mixed problems of elasticity theory,” Prikl. Mat. Mekh.,26, No. 5, 907–912 (1962).

  22. 22.

    G. P. Cherepanov, Mechanics of Brittle Fracture [in Russian], Nauka, Moscow (1974).

  23. 23.

    H. M. Westergaard, “Bearing pressure and cracks,” J. Appl. Mech.,6, No. 2, A49-A53 (1939).

Download references

Additional information

Institute of Mechanics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Prikladnaya Mekhanika, Vol. 17, No. 5, pp. 3–12, May, 1981.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guz', A.N. Theory of cracks in elastic bodies with initial stresses (cleavage problem). Soviet Applied Mechanics 17, 405–412 (1981). https://doi.org/10.1007/BF00885285

Download citation

Keywords

  • Initial Stress
  • Elastic Body
  • Cleavage Problem