Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Energy analysis of wave motions in the lamb problem

  • 29 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    V. M. Babich and I. A. Molotkov, “Mathematical methods in the theory of elastic waves,” in: Mechanics of Deformable Solids [in Russian], Vol. 10, VINITI, Moscow (1977), p. 5.

  2. 2.

    I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and, Applications, Plenum Press, New York (1967).

  3. 3.

    L. Ya. Gutin, “Theory of steady-state oscillations of an elastic half-space,” Zh. Tekh. Fiz.,21, No. 8, 892 (1951).

  4. 4.

    W. Nowacki, Theory of Elasticity [Russian translation], Mir, Moscow (1975).

  5. 5.

    J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam (1973).

  6. 6.

    B. A. Auld, Acoustic Fields and Waves in Solids, Vol. 2, Wiley, New York, (1973).

  7. 7.

    W. M. Ewing, W. S. Jardetzky, and F. Press, Elastic Waves in Layered Media, McGraw-Hill, New York (1957).

  8. 8.

    K. F. Graff, Wave Motion in Elastic Solids, Clarendon, Oxford-New York (1975).

  9. 9.

    H. Lamb, “On the propagation of tremors over the surface of an elastic solid,” Phil. Trans. R. Soc. London, Ser. A,203, 1 (1904).

  10. 10.

    A. E. Lord, “Geometric diffraction loss in longitudinal and shear wave attenuation measurements in an isotropic half-space,” J. Acoust. Soc. Am.,39, No. 4, 650 (1966).

  11. 11.

    G. F. Miller and H. Pursey, “On the partition of energy between elastic waves in a semiinfinite solid,” Proc. R. Soc. London, Ser. A,233, No. 1191, 55 (1955).

  12. 12.

    G. F. Miller and H. Pursey, “The field and radiation impedance of mechanical radiators on the free surface of a semi-infinite isotropic solid,” Proc. R. Soc. London, Ser. A,223 No. 1154, 521 (1954).

  13. 13.

    R. D. Woods, “Screening of surface waves in soils,” Proc. Am. Soc. Civil Engrs.,SM94, No. 5, 951 (1968).

Download references

Additional information

Institute of Mechanics, Academy of Sciences of the Ukrainian SSR. Translated from Prikladnaya Mekhanika, Vol. 17, No. 12, pp. 76–82, December, 1981.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meleshko, V.V. Energy analysis of wave motions in the lamb problem. Soviet Applied Mechanics 17, 1105–1110 (1981).

Download citation


  • Wave Motion
  • Energy Analysis
  • Lamb Problem