Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Molecular symmetry and exciton interaction in photosynthetic primary events

  • 42 Accesses

  • 38 Citations

Abstract

In this paper, the molecular details of the recently proposed energy upconversion theory of photosynthesis are reviewed. The primary light reactions are explained in terms of aC 2 symmetrical structure of the reaction center involving a (Chl−H2O)2 adduct. It is shown that exciton interaction within the (Chl−H2O)2 complex leads to an antisymmetric triplet state which may act as an energy trap. The presence of the energy trap in the reaction center suggests that the trigger step for the photoionization of active chlorophylls may involve the summation of two red excitation photons. Under normal conditions, the steadystate one-photon-per-electron quantum requirement is obtained. The functional properties of the various molecular constituents of the Chl-a molecule, such as the Ring V β-ketoester group, the phytyl tail, the central Mg atom, and the π-system of the macrocycle are explained within the present theoretical framework. A detailed analysis is given of the postulates and the consequences of the proposed model. The ramifications of the theory are probed, and their biological consequences are suggested for future study.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    F.K. Fong: J. Electrochem. Soc.121, c117 (1974)

  2. 2.

    F.K. Fong: J. Theoret. Biol.46, 407 (1974)

  3. 3.

    F.K. Fong: Proc. Natl. Acad. Sci.71, 3692 (1974)

  4. 4.

    M.D. Kamen:Primary Processes in Photosynthesis (Academic Press, New York, 1963)

  5. 5.

    R.K. Clayton:Molecular Physics in Photosynthesis (Blaisdell Publishing Co., New York, 1965)

  6. 6.

    E. Rabinowitch, Govindjee:Photosynthesis (John Wiley & Sons, Inc., New York, 1969)

  7. 7.

    J. Franck, J.L. Rosenburg: J. Theoret. Biol.7, 276 (1964)

  8. 8.

    J. Franck: In:Research in Photosynthesis, Gatlinburg Symposium 1955, ed. by H. Gaffron (Interscience Publishers, Inc., New York, 1957) p. 19

  9. 9.

    J. Franck:Handbuch der Pflanzenphysiologie, Vol. V/1 (Springer-Verlag, Berlin, Heidelberg, New York 1960), p. 689

  10. 10.

    P.P. Feofilov, V.V. Ovsyankin: Appl. Optics6, 1828 (1967)

  11. 11.

    J.R. Norris, R.A. Uphaus, H.L. Crespi, J.J. Katz: Natl. Acad. Sci.68, 625 (1971)

  12. 12.

    J.D. McElroy, G. Feher, D.C. Mauzerall: Biochim. Biophys. Acta267, 363 (1972)

  13. 13.

    J.R. Norris, R.A. Uphaus, J.J. Katz: Biochim. Biophys. Acta275, 161 (1972)

  14. 14.

    J.R. Norris, M.E. Druyan, J.J. Katz: J. Am. Chem. Soc.95, 1680 (1972)

  15. 15.

    G. Feher, A.J. Hoff, R.A. Isaacson, J.D. McElroy: Biophys. J.13, 61a (1973)

  16. 16.

    J.J. Katz, J.R. Norris: In:Current Topics in Bioenergetics, Vol. 5, ed. by D.R. Sanadi and L. Packer (Academic Press, Inc., New York 1973), pp. 41–75, and references listed therein

  17. 17.

    K. Ballschmiter, J.J. Katz: J. Am. Chem. Soc.91, 2661 (1969) M.Garcia-Morin, R.A.Uphaus, J.R.Norris, J.J.Katz: J. Phys. Chem.73, 1066 (1969)

  18. 18.

    R.S. Mulliken, W.B. Person:Molecular Complexes (John Wiley and Sons, Inc., New York 1969) Chapter 4

  19. 19.

    L. Pauling:Nature of the Chemical Bond, 3rd ed. (Cornell University Press, Ithaca, New York 1960) Chapter 12

  20. 20.

    I. Fleming: Nature216, 151 (1967)

  21. 21.

    H.L.J. Bäckstrom: Z. Physik. Chem.325, 99 (1934)

  22. 22.

    H.L.J. Bäckstrom, K. Sandros: J. Chem. Phys.23, 2197 (1955)

  23. 23.

    W.M. Moore, G.S. Hammond, R.P. Foss: J. Am. Chem. Soc.83, 2789 (1961)

  24. 24.

    G.S. Hammond, N.J. Turro: Science142, 1541 (1963)

  25. 25.a)

    F.K. Fong, M.M. Miller: Chem. Phys. Letters10, 408 (1971)

  26. 25.b)

    F.K. Fong, S.L. Naberhuis, M.M. Miller: J. Chem. Phys.56, 4020 (1972)

  27. 26.

    F.K. Fong, W.A. Wassam: J. Chem. Phys.58, 956 (1973)

  28. 27.

    F.K. Fong, D.J. Diestler: J. Chem. Phys.57, 4953 (1972)

  29. 28.

    H.V. Lauer, F.K. Fong: J. Chem. PHys.60, 274 (1974)

  30. 29.

    F.K. Fong:Theory of Molecular Relaxation: Applications in Chemistry and Biology (Wiley-Interscience, New York 1975), to be published

  31. 30.

    J.J. Katz, G.L. Closs, F.C. Pennington, M.R. Thomas, H.H. Strain: J. Am. Chem. Soc.85, 3801 (1963)

  32. 31.

    A.F.H. Anderson, M. Calvin: Arch. Biochem. Biophys.107, 251 (1964)

  33. 32.

    L.J. Boncher, J.J. Katz: J. Am. Chem. Soc.89, 1340 (1967);89, 4703 (1967)

  34. 33.

    M. Henry, J.P. Leicknam: Colloq. Int. Cent. Rech. Sci.191, 317 (1970)

  35. 34.

    G.L. Closs, J.J. Katz, F.C. Pennington, M.R. Thomas, H.H. Strain: J. Am. Chem. Soc.85, 3809 (1963)

  36. 35.

    J.J. Katz, R.C. Dougherty, L.J. Boucher: In:The Chlorophylls, ed. by L.P. Vernon and G.R. Seely (Academic Press Inc., New York 1966), Chapter 7, pp. 185–251

  37. 36.

    J.J. Katz, H.H. Strain, D.L. Leussing, R.C. Dougherty: J. Am. Chem. Soc.90, 784 (1968)

  38. 37.

    J.J. Katz, T.R. Janson, A.G. Kostka, R.A. Uphaus, G.L. Closs: J. Am. Chem. Soc.94, 2883 (1972)

  39. 38.

    K. Ballschmiter, K. Truesdell, J.J. Katz: Biochim. Biophys. Acta184, 604 (1969)

  40. 39.

    K. Ballschmiter, J.J. Katz: Nature220, 1231 (1968)

  41. 40.

    E.U. Condon, G.H. Shortley:The Theory of Atomic Spectra, 2nd ed. (Cambridge University Press, London, New York 1953) p. 60

  42. 41.

    A.S. Davydov:Theory of Molecular Excitons (McGraw-Hill Book Co., Inc., New York 1962)

  43. 42.

    V.A. Shuvalov, F.F. Litvin: Molec. Biol.3, 59 (1969)

  44. 43.

    G. Feher: Photochem. Photobiol.14, 373 (1971)

  45. 44.

    See, for example, R. Lumry, B. Mayne, J.D. Spikes: Discussions Faraday Soc.27, 149 (1959)

  46. 45.

    One of these possibilities is the excitation ofCT by a direct resonant photon transition initiating fromT 1. A simple doubling of the quantum yield in the strong-light limit is not obtained in this case. The direct photon process may be important in active-center preparations in which the concentration of the photoactive (Chl−H2O)2 is greatly enhanced

  47. 46.

    T.L. Netzel, P.M. Rentzepis, J. Leigh: Science182, 238 (1973)

  48. 47.

    D. Mauzerall: Proc. Natl. Acad. Sci.69, 1358 (1972)

  49. 48.

    P. Joliot: Biochim. Biophys. Acta102, 116 (1965)

  50. 49.

    P. Joliot: Photochem. Photobiol.8, 451 (1968)

  51. 50.

    P. Joliot, G. Barbieni, R. Chabaud: Photochem. Photobiol.10, 309 (1969)

  52. 51.

    B. Kok, B. Fonbush, M. McGloin: Photochem. Photobiol.11, 457 (1970)

  53. 52.

    R.E. Merrifield: J. Chem. PHys.48, 4318 (1968)

  54. 53.

    R.C. Johnson, R.E. Merrifield, P. Avakian, R.B. Flippen: Phys. Rev. Lett.19, 285 (1967)

  55. 54.

    A. Kawada, R.C. Jarnagin: J. Chem. Phys.44, 1919 (1966)

  56. 55.

    M. Silver, D. Olness, M. Swicord, R.C. Jarnagin: Phys. Rev. Letters10, 12 (1963)

  57. 56.

    D.J. Zalucha, J.C. Wright, F.K. Fong: J. Chem. Phys.59, 997 (1973)

  58. 57.

    D.J. Zalucha, J.A. Sell, F.K. Fong: J. Chem. Phys.60, 1660 (1974)

  59. 58.

    R.K. Watts, H.J. Richter: Phys. Rev. B6, 1584 (1972)

  60. 59.

    K. Ramaswamy, R. Pichai, S.G. Gnanadesikan: J. Molec. Spectr.23, 416 (1967)

  61. 60.

    W.A.Wassam, F.K.Fong: Exciton Interactions in Photoactive Chlorophyll-Water Adducts. J. Chem. Phys. (to be published)

  62. 61.

    C.A. Wraight, J.S. Leigh, P.L. Dutton, R.K. Clayton: Biochim. Biophys. Acta333, 401 (1974)

  63. 62.

    See, for example, M. Baltscheffsky: Arch. Biochem. Biophys.130, 646 (1969)

  64. 62a.

    M. Baltscheffsky, D.O. Hall: FEBS Letters39, 345 (1974)

  65. 63.

    See, for example, M. Tomkiewicz, M.P. Klein: Proc. Natl. Acad. Sci.70, 143 (1973)

Download references

Author information

Additional information

This research was supported by the NSF/MRL Program, Grant GH 33574A1.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fong, F.K. Molecular symmetry and exciton interaction in photosynthetic primary events. Appl. Phys. 6, 151–166 (1975). https://doi.org/10.1007/BF00883745

Download citation

Keywords

  • Adduct
  • Ground State Singlet
  • Molecular Symmetry
  • Phytyl
  • Exciton Interaction