## Abstract

In this paper, we study a new semantics of logic programming and deductive databases. The*possible model semantics* is introduced as a declarative semantics of disjunctive logic programs. The possible model semantics is an alternative theoretical framework to the classical minimal model semantics and provides a flexible inference mechanism for inferring negation in disjunctive logic programs. We also present a proof procedure for the possible model semantics and show that the possible model semantics has an advantage from the computational complexity point of view.

This is a preview of subscription content, log in to check access.

## References

- 1.
Apt, K. R., Blair, H. A. and Walker, A.: Towards a theory of declarative knowledge, in J. Minker (ed.),

*Foundations of Deductive Databases and Logic Programming*, Morgan Kaufmann, 1988, pp. 89–148. - 2.
Baral, C., Lobo, J. and Minker, J.: Generalized disjunctive well-founded semantics for logic programs,

*Ann. Mathematics and Artificial Intelligence***5**(1992), 89–132. - 3.
Bancilhon, F. and Ramakrishnan, R.: Performance evaluation of data intensive logic programs, in J. Minker (ed.),

*Foundations of Deductive Databases and Logic Programming*, Morgan Kaufmann, 1988, pp. 439–517. - 4.
Chan, E. P. F.: A possible world semantics for disjunctive databases,

*IEEE Trans. on Knowledge and Data Engineering***5**(2) (1993), 282–292. Preliminary version in: Research Report CS-89-47, Dept. of Computer Science, Univ. of Waterloo, 1989. - 5.
Clark, K. L.: Negation as failure, in H. Gallaire and J. Minker (eds.),

*Logic and Data Bases*, Plenum, New York, 1978, pp. 293–322. - 6.
Decker, H.: Foundations of first-order databases, Research Report, Siemens, 1992. Preliminary version in

*Proc. 2nd Int. Workshop on the Deductive Approach to Information Systems and Databases*, Universitat Politecnica de Catalunya, Report de Recerca LSI/91/30, 1991, pp. 149–173. - 7.
Decker, H. and Casamayor, J. C.: Sustained models and sustained answers in first order databases,

*Proc. 4th Int. Workshop on the Deductive Approach to Information Systems and Databases*, 1993. - 8.
Dix, J.: Classifying semantics of disjunctive logic programs,

*Proc. Joint Int. Conf. and Symp. on Logic Programming*, MIT Press, 1992, pp. 798–812. - 9.
Dung, P. M.: Negation as failure for disjunctive logic programming,

*Proc. ILPS'91 Post-Conference Workshop on Disjunctive Logic Programs*, 1991. - 10.
Eiter, T. and Gottlob, G.: Complexity aspects of various semantics for disjunctive databases,

*Proc. 12th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems*, 1993, pp. 158–167. - 11.
Eiter, T., Gottlob, G. and Gurevich, Y.: Curb Your Theory!: A circumscriptive approach for inclusive interpretation of disjunctive information,

*Proc. IJCAI-93*, Morgan Kaufmann, 1993, pp. 634–639. - 12.
Eshghi, K. and Kowalski, R. A.: Abduction compared with negation by failure,

*Proc. 6th Int. Conf. on Logic Programming*, MIT Press, 1989, pp. 234–254. - 13.
Fernandez, J. A., Lobo, J., Minker, J. and Subrahmanian, V. S.: Disjunctive LP + integrity constraints = stable model semantics,

*Ann. Mathematics and Artificial Intelligence***8**(3&4) (1993), 449–474. - 14.
Gelfond, M. and Lifschitz, V.: The Stable model semantics for logic programming,

*Proc. 5th Int. Conf. and Symp. on Logic Programming*, MIT Press, 1988, pp. 1070–1080. - 15.
Gelfond, M. and Lifschitz, V.: Classical negation in logic programs and disjunctive databases,

*New Generation Computing***9**(3&4) (1991), 365–385. - 16.
Gelfond, M.: Strong introspection,

*Proc. AAAI-91*, MIT Press, 1991, pp. 386–391. - 17.
Inoue, K., Koshimura, M. and Hasegawa, R.: Embedding negation as failure into a model generation theorem prover,

*Proc. 11th Int. Conf. on Automated Deducation*, Lecture Notes in Artificial Intelligence 607, Springer-Verlag, 1992, 400–415. - 18.
Inoue, K. and Sakama, C.: Transforming abductive logic programs to disjunctive programs,

*Proc. 10th Int. Conf. on Logic Programming*, MIT Press, 1993, pp. 335–353. - 19.
Inoue, K. and Sakama, C.: On positive occurrences of negation as failure,

*Proc. 4th Int. Conf. on Principles of Knowledge Representation and Reasoning*, Morgan Kaufmann, 1994, pp. 293–304. - 20.
Kraus, S., Lehmann, D. and Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics,

*Artificial Intelligence***44**(1) (1990), 167–207. - 21.
Lobo, J., Minker, J. and Rajasekar, A.:

*Foundations of Disjunctive Logic Programming*, MIT Press, 1992. - 22.
Manthey, R. and Bry, F.: SATCHMO: A theorem prover implemented in Prolog,

*Proc. 9th Int. Conf. on Automated Deducation*, Lecture Notes in Computer Science 310, Springer-Verlag, 1988, pp. 415–434. - 23.
McCarthy, J.: Circumscription — a form of nonmonotonic reasoning,

*Artificial Intelligence***13**(1&2) (1980), 27–39. - 24.
Minker, J.: On indefinite data bases and the closed world assumption,

*Proc. 6th Int. Conf. on Automated Deduction*, Lecture Notes in Computer Science 138, Springer-Verlag, 1982, pp. 292–308. - 25.
Marek, W. and Subrahmanian, V. S.: The relationship between stable, supported, default and autoepistemic semantics for general logic programs,

*Theoretical Computer Science***103**(1992), 365–386. - 26.
Marek, W. and Truszczynski, M.: Autoepistemic logic,

*J. ACM***38**(3) (1991), 588–619. - 27.
Marek, W. and Truszczynski, M.: Computing intersection of autoepistemic expansions,

*Proc. 1st Int. Workshop on Logic Programming and Nonmonotonic Reasoning*, MIT Press, 1991, 37–50. - 28.
Przymusinski, T. C.: On the declarative semantics of deductive databases and logic programs, in J. Minker (ed.),

*Foundations of Deductive Databases and Logic Programming*, Morgan Kaufmann, 1988, pp. 193–216. - 29.
Przymusinski, T. C.: Stable semantics for disjunctive programs,

*New Generation Computing***9**(3&4) (1991), 401–424. - 30.
Przymusinski, T. C.: Semantics of disjunctive logic programs and deductive databases,

*Proc. 2nd Int. Conf. on Deductive and Object-Oriented Databases*, Lecture Notes in Computer Science 566, Springer-Verlag, 1991, pp. 85–107. - 31.
Reiter, R.: On closed world databases, in H. Gallaire and J. Minker (eds.),

*Logic and Data Bases*, Plenum, New York, 1978, pp. 55–76. - 32.
Rajasekar, A., Lobo, J. and Minker, J.: Weak generalized closed world assumption,

*J. Automated Reasoning***5**(1989), 293–307. - 33.
Ross, K.: The well founded semantics for disjunctive logic programs,

*Proc. 1st Int. Conf. on Deductive and Object-Oriented Databases*, North-Holland, 1989, pp. 385–401. - 34.
Ross, K. A. and Topor, R. W.: Inferring negative information from disjunctive databases,

*J. Automated Reasoning***4**(2) (1988), 397–424. - 35.
Sakama, C.: Possible model semantics for disjunctive databases,

*Proc. 1st Int. Conf. on Deductive and Object-Oriented Databases*, North-Holland, 1989, pp. 369–383. - 36.
Sakama, C. and Inoue, K.: Negation in disjunctive logic programs,

*Proc. 10th Int. Conf. on Logic Programming*, MIT Press, 1993, pp. 703–719. - 37.
Sakama, C. and Inoue, K.: On the equivalence between disjunctive and abductive logic programs,

*Proc. 11th Int. Conf. on Logic Programming*, MIT Press, 1994, pp. 489–503. - 38.
Sato, T.: Completed logic programs and their consistency,

*J. Logic Programming***9**(1), 1990, pp. 33–44. - 39.
Schlipf, J. S.: Formalizing a logic for logic programming.

*Ann. Mathematics and Artificial Intelligence***5**(1992), 279–302. - 40.
Van Emden, M. H. and Kowalski, R. A.: The semantics of predicate logic as a programming language,

*J. ACM***23**(4) (1976), 733–742.

## Author information

### Affiliations

## Rights and permissions

## About this article

### Cite this article

Sakama, C., Inoue, K. An alternative approach to the semantics of disjunctive logic programs and deductive databases.
*J Autom Reasoning* **13, **145–172 (1994). https://doi.org/10.1007/BF00881915

Received:

Revised:

Issue Date:

### Key words

- disjunctive logic programs
- possible model semantics
- closed world assumption
- model generation procedure