Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Holomorphy in convergence spaces


We introduce a new approach to infinite dimensional holomorphy. Cast in the setting of closed-embedded linear convergence spaces and based on a categorical definition of derivative, our theory applies beyond the traditional open domains. It reaches certain domains with empty interior (that arise naturally in Fréchet spaces) and gives a fully fledged differential calculus. On open domains our approach provides a new characterization of holomorphic maps. Thus earlier theories become expanded as well as strengthened.

This is a preview of subscription content, log in to check access.


  1. 1.

    S. Bjon and M. Lindström: A general approach to infinite dimensional holomorphy,Monatsh. Math. 101 (1986), 11–26.

  2. 2.

    J. Bochnak and J. Siciak: Analytic functions in topological vector spaces,Studia Math. 39 (1971), 77–112.

  3. 3.

    S. Dineen:Complex Analysis in Locally Convext Spaces, North-Holland (1981).

  4. 4.

    A. Kriegl and L. D. Nel: A convenient setting for holomorphy,Cahiers Topologie Géom. Différentielle Catégoriques 26 (1985), 273–309.

  5. 5.

    K. C. Min and L. D. Nel: Infinite dimensional holomorphy via categorical calculus,Monatsh. Math. 111 (1991), 55–68.

  6. 6.

    L. D. Nel: Infinite dimensional calculus allowing nonconvex domains with empty interior,Monatsh. Math. 110 (1990), 145–166.

  7. 7.

    L. D. Nel: Nonlinear existence theorems in nonnormable analysis,Category Theory at Work, Heldermann (1991), 343–365.

  8. 8.

    L. D. Nel:Introduction to Categorical Methods (Parts One and Two), Carleton-Ottawa Mathematical Lecture Note Series 11, Carleton Univ. (1991).

  9. 9.

    L. D. Nel:Introduction to Categorical Methods (Part Three), Carleton-Ottawa Mathematical Lecture Note Series 12, Carleton Univ. (1992).

Download references

Author information

Additional information

NSERC aided

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Monadi, A., Nel, L.D. Holomorphy in convergence spaces. Appl Categor Struct 1, 233–245 (1993). https://doi.org/10.1007/BF00880045

Download citation

Mathematics Subject Classifications (1991)

  • Primary: 46G20
  • Secondary: 58B12, 46M40

Key words

  • Infinite dimensional holomorphy
  • closed-embedded linear convergence spaces
  • analyte
  • categorical methods
  • categorical differentiation theory