Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Numerical modelling of bifurcation and localisation in cohesive-frictional materials


Methods are reviewed for analysing highly localised failure and bifurcation modes in discretised mechanical systems as typically arise in numerical simulations of failure in soils, rocks, metals and concrete. By the example of a plane-strain biaxial test it is shown that strain softening and lack of normality in elasto-plastic constitutive equations and the ensuing loss of ellipticity of the governing field equations cause a pathological mesh dependence of numerical solutions for such problems, thus rendering the results effectively meaningless. The need for introduction of higher-order continuum models is emphasised to remedy this shortcoming of the conventional approach. For one such a continuum model, namely the unconstrained Cosserat continuum, it is demonstrated that meaningful and convergent solutions (in the sense that a finite width of the localisation zone is computed upon mesh refinement) can be obtained.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. Bazant, Z. P., andOh, B. (1983),Crack Band Theory for Fracture of Concrete, RILEM Materials and Structures16, 155–177.

  2. Borst, R. de,Non-linear Analysis of Frictional Materials, Dissertation (Delft University of Technology, Delft 1986).

  3. Borst, R. de (1988),Bifurcations in Finite Element Models with a Non-associated Flow Law, Int. J. Num. Anal. Meth. Geomech.12, 99–116.

  4. Borst, R. de (1989),Numerical Methods for Bifurcation Analysis in Geomechanics, Ing.-Arch.59, 160–174.

  5. Borst, R. de (1991),Simulation of Strain Localisation: A Reappraisal of the Cosserat Continuum, Engng. Comput.8.

  6. Cosserat, E., andCosserat, F.,Theórie des Corps Deformables (Herman et fils, Paris 1909).

  7. Crisfield, M. A. (1981),A Fast Incremental/Iterative Procedure that Handles Snap-through, Comput. Struct.13, 55–62.

  8. Crisfield, M. A. (1982),Local Instabilities in the Non-linear Analysis of Reinforced Concrete Beams and Slabs, Proc. Inst. Civil Engrs.73, Part 2, 55–62.

  9. Günther, W. (1958),Zur Statik und Kinematik des Cosseratschen Kontinuums, Abh. Braunschweig. Wiss. Ges.10, 195–213.

  10. Hill, R. (1958),A General Theory of Uniqueness and Stability in Elastic-plastic Solids, J. Mech. Phys. Solids7, 236–249.

  11. Lasry, D., andBelytschko, T. (1988),Localization Limiters in Transient Problems, Int. J. Solids Structures24, 581–597.

  12. Mühlhaus, H.-B., andVardoulakis, I. (1987),The Thickness of Shear Bands in Granular Materials, Géotechnique37, 271–283.

  13. Mühlhaus, H.-B.,Lamination phenomena in prestressed rock, InPreprints 2nd Int. Symp. on Rockbursts and Seismicity in Mines (University of Minnesota, Minneapolis 1988) pp. 117–128.

  14. Mühlhaus, H.-B. (1989),Application of Cosserat Theory in Numerical Solutions of Limit Load Problems, Ing.-Arch.59, 124–137.

  15. Mühlhaus, H.-B.,Continuum models for layered and blocky rock, InComprehensive Rock Engineering, Vol. 2: Analysis and Design Methods (Pergamon Press, Oxford 1991).

  16. Needleman, A., andTvergaard, V.,Finite element analysis of localization in plasticity, InFinite Elements—Special Problems in Solid Mechanics (Oden, J. T., and Carey, G. F. eds.), (Prentice Hall, New Jersey 1983), Ch. 5, pp. 95–267.

  17. Noll, W. (1958),A Mathematical Theory of the Mechanical Behaviour of Continuous Media, Arch. Rat. Meth. Anal.2, 197–226.

  18. Pijaudier-Cabot, G., andBazant, Z. P. (1987),Nonlocal Damage Theory, ASCE J. Eng. Mech.113, 1512–1533.

  19. Ramm, E.,Strategies for tracing the nonlinear response near limit points, InNonlinear Finite Element Analysis in Structural Mechanics, (Wunderlich, W., Stein, E., and Bathe, K.-J. eds.) (Springer Verlag, Berlin 1981), pp. 63–83.

  20. Read, H. E., andHegemier, G. A. (1984),Strain Softening of Rock, Soil and Concrete—A Review Article, Mech. Mat.3, 271–294.

  21. Riks, E. (1979),An Incremental Approach to the Solution of Snapping and Buckling Problems, Int. J. Solids Structures15, 529–551.

  22. Rots, J. G., andBorst, R. de (1987),Analysis of Mixed-mode Fracture in Concrete, ASCE J. Eng. Mech.113, 1739–1758.

  23. Rots, J. G.,Numerical Modelling of Concrete Fracture, Dissertation (Delft University of Technology, Delft 1988).

  24. Rots, J. G., andBorst, R. de (1989),Analysis of Concrete Fracture in ‘Direct’ Tension, Int. J. Solids Structures25, 1381–1394.

  25. Rudnicki, J. W., andRice, J. R. (1975),Conditions for the Localization of the Deformation in Pressure-sensitive Materials, J. Mech. Phys. Solids23, 371–394.

  26. Runesson, K., Larsson, R., andSture S. (1989),Characteristics and Computational Procedure in Softening Plasticity, ASCE J. Eng. Mech.115, 1628–1646.

  27. Schaefer, H.,Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuums, InMiszellaneen der Angewandten Mechanik (Schäfer, M. ed.) (Akademie-Verlag, Berlin 1962) pp. 277–292.

  28. Schreyer, H. L., andChen, Z. (1986),One-dimensional Softening with Localization, J. Appl. Mech.53, 791–979.

  29. Triantafyllidis, N., andAifantis, E. C. (1986),A Gradient Approach to Localization of Deformation: I. Hyperelastic Materials, J. Elasticity16, 225–237.

  30. Vermeer, P. A., andBorst, R. de (1984),Non-associated Plasticity for Soils, Concrete and Rock, HERON29, 1–64.

  31. Willam, K. J.,Experimental and computational aspects of concrete fracture, InProc. Int. Conf. Computer Aided Analysis and Design of Concrete Structures, (Damjanić, F. et al., eds.) (Pineridge Press, Swansea 1984) Part 1, pp. 33–70.

  32. Zbib, H. M., andAifantis, E. C. (1988),On the Localization and Postlocalization Behavior of Plastic Deformation, I, II, III, Res Mechanica23, 261–277, 279–292, 293–305.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Borst, R. Numerical modelling of bifurcation and localisation in cohesive-frictional materials. PAGEOPH 137, 367–390 (1991).

Download citation

Key words

  • Strain localisation
  • bifurcation
  • finite-element analysis
  • micro-polar continua
  • strain softening
  • non-associated plasticity