Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

“Smart” mechanisms emerging from cooperation and competition between modules

  • 40 Accesses

  • 37 Citations

Summary

Three sets of experiments are described. The first set concerns the detection of the 3-D possibility of shaded 2-D block patterns. The data indicate that the human perceptual system is able to do this above chance level, but in a specific and restricted way, which suggests the possibility of a module devoted to it. The second set concerns the determination of the 3-D orientation of coloured 2-D patterns. The data show that the human perceptual system uses physical constraints of colour mixing in doing this. Again, the mechanism seems to have characteristics suggesting modularity. The third set is about the detection of skewed symmetry in dot patterns. Skewed symmetry can be used as a source of information about the slant and tilt of a surface with bilateral symmetry present on it. Therefore, a module for recovering this information might exist.

All these empirical data show that Fodor's criteria of modularity can be used to test hypotheses about visual mechanisms recovering 3-D information from 2-D inputs. But this does not imply that the results prove modularity and cannot be interpreted otherwise. As an exercise the same story about these experiments is told with the use of jargon from ecological realism and connectionist approaches. It is concluded that some of the approaches to some perceptual mechanisms are not as divergent as they might seem. The main theme underlying modular, connectionist, and ecological approaches is the avoidance of central intelligence agencies by the incorporation of physical constraints. Within this broad framework different questions can be asked and answers attempted that may depend on personal taste.

This is a preview of subscription content, log in to check access.

References

  1. Attneave, F. (1971). Multistability in perception.Scientific American, 225, 62–71.

  2. Attneave, F. (1982). Praegnanz and soap bubble systems: A theoretical exploration. In J. Beck (Ed.),Organization and representation in perception (pp. 11 -29). Hillsdale, NJ: Erlbaum.

  3. Beck, J. (1985). Perception of transparency in man and machine.Computer Vision, Graphics, and Image Processing, 31, 127–138.

  4. Bergström, S. S. (1977). Common and relative components of reflected light as information about the illumination, colour, and three-dimensional form of objects.Scandinavian Journal of Psychology, 18, 180–186.

  5. Bertenthal, B. I., Proffitt, D. R., & Kramer, S. J. (1987). Perception of biomechanical motions by infants: Implementation of various processing constraints.Journal of Experimental Psychology: Human Perception and Performance, 13, 577–585.

  6. Biederman, I. (1987). Recognition-by-components: A theory of human image understanding.Psychological Review, 94, 115–147.

  7. Braunstein, M. L., Andersen, G. J., Rouse, M. W., & Tittle, J. S. (1986). Recovering viewer-centered depth from disparity, occlusion, and velocity gradients.Perception & Psychophysics, 40, 216–224.

  8. Braunstein, M. L., Hoffman, D. D., Shapiro, L. R., Andersen, G. J., & Bennett, B. M. (1987). Minimum points and views for the recovery of three-dimensional structure.Journal of Experimental Psychology: Human Perception and Performance, 13, 335–343.

  9. Bruno, N., & Cutting, J. E. (1988). Minimodularity and the perception of layout.Journal of Experimental Psychology: General, 117, 161–170.

  10. Bülthoff, H. H., & Mallot, H. A. (1987). Interaction of different modules in depth perception.Proceedings of the First International Conference on Computer Vision (pp. 295–305). London, UK: IEEE Computer Society.

  11. Cavanagh, P. (1987). Reconstructing the third dimension: Interactions between colour, texture, motion, binocular disparity and shape.Computer Vision, Graphics, and Image Processing, 37, 171–195.

  12. Cavanagh, P., & Leclerc, Y. G. (1989). Shape from shadows.Journal of Experimental Psychology: Human Perception and Performance, 15, 3–27.

  13. Cohen, N. J., Abrams, I. T., Harley, W. S., Tabor, L., & Sejnowski, T. J. (1986). Skill learning and repetition priming in symmetry detection: Parallel studies of human subjects and connectionist models.Proceedings of the Eighth Annual Conference of the Cognitive Science Society (pp. 23–44). Hillsdale, NJ: Erlbaum.

  14. Cutting, J. E. (1983). Four assumptions about invariance in perception.Journal of Experimental Psychology: Human Perception and Performance, 9, 310–317.

  15. Cutting, J. E. (1986).Perception with an eye for motion. Cambridge, MA: MIT Press/Bradford Books.

  16. Cutting, J. E. (1987). Rigidity in cinema seen from the front row, side aisle.Journal of Experimental Psychology: Human Perception and Performance, 13, 323–334.

  17. Cutting, J. E. (1988). Affine distortions of pictorial space: Some predictions for Goldstein (1987) that La Goumerie (1859) might have made.Journal of Experimental Psychology: Human Perception and Performance, 14, 305–311.

  18. Cutting, J. E., & Millard, R. T. (1984). Three gradients and the perception of flat and curved surfaces.Journal of Experimental Psychology: General, 113, 198–216.

  19. Dodwell, P. C. (1983). The Lie transformation group model of visual perception.Perception & Psychophysics, 34, 1–16.

  20. Enns, J. (1990). Influence of scene-based properties on visual search.Science, 247, 721–723.

  21. Estes, W. K. (1988). Toward a framework for combining connectionist and symbol-processing models.Journal of Memory and Language, 27, 196–212.

  22. Feldman, J. A. (1985). Four frames suffice: A provisional model of vision and space.Behavioral and Brain Sciences, 8, 265–289.

  23. Fodor, J. A. (1983).The modularity of mind. Cambridge, MA: MIT Press/Bradford Books.

  24. Fodor, J. A. (1985). Précis of “The Modularity of Mind”.Behavioral and Brain Sciences, 8, 1–42.

  25. Fodor, J. A., & Pylyshyn, Z. W. (1981). How direct is visual perception? Some reflections on Gibson's “Ecological Approach”.Cognition, 9, 139–196.

  26. Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis.Cognition, 28, 3–71.

  27. Friedberg, S. A. (1986). Finding the axes of skewed symmetry.Computer Vision, Graphics, and Image Processing, 34, 138–155.

  28. Gibson, J. J. (1979).The ecological approach to visual perception. Boston, MA: Houghton Mifflin.

  29. Gilchrist, A. L. (1979). The perception of surface blacks and whites.Scientific American, 240, 88–97.

  30. Granrud, C. E., Yonas, A., Opland, E. A. (1985). Infants' sensitivity to the depth cue of shading.Perception & Psychophysics, 37, 415–419.

  31. Grossberg, S. (1987a). Cortical dynamics of three-dimensional form, colour, and brightness perception: I. Monocular theory.Perception & Psychophysics, 42, 87–116.

  32. Grossberg, S. (1987b). Cortical dynamics of three-dimensional form, colour, and brightness perception: II. Binocular theory.Perception & Psychophysics, 41, 117–158.

  33. Grossberg, S., & Mingolla, E. (1985a). Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations.Perception & Psychophysics, 38, 141–171.

  34. Grossberg, S., & Mingolla, E. (1985b). Neural dynamics of form perception: Boundary completion, illusory figures, and neon colour spreading.Psychological Review, 92, 173–211.

  35. Grossberg, S., & Mingolla, E. (1987). Neural dynamics of surface perception: Boundary webs, illuminants, and shape-from-shading.Computer Vision, Graphics, and Image Processing, 37, 116–165.

  36. Hakalahti, H. (1983). Estimation of surface orientation using the hypothesis of object symmetry. TR-1324. Maryland: Center for Automation Research.

  37. Heider, G. M. (1933). New studies in transparency, form, and colour.Psychologische Forschung, 17, 13–55.

  38. Hemenway, K., & Palmer, S. E. (1978). Organizational factors in perceived dimensionality.Journal of Experimental Psychology: Human Perception and Performance, 4, 388–396.

  39. Humphreys, G. W., & Riddoch, M. J. (1986). Information processing systems which embody computational rules: The connectionist approach.Mind & Language, 1, 201–212.

  40. Jenkins, B. (1983). Component processes in the perception of bilaterally symmetric dot textures.Perception & Psychophysics, 34, 433–440.

  41. Kanade, T., & Kender, J. R. (1983). Mapping image properties into shape constraints: Skewed symmetry, affine-transformable patterns, and the shape-from-texture paradigm. In J. Beck, B. Hope, & A. Rosenfeld (Eds.),Human and machine vision (Vol. 1, pp. 237–257). New York: Academic Press.

  42. Kawamoto, A. H., & Anderson, J. A. (1985). A neural network model of multistable perception.Acta Psychologica, 59, 35–65.

  43. Kienker, P. K., Sejnowski, T. J., Hinton, G. E., & Schumacher, L. E. (1986). Separating figure from ground with a parallel network.Perception, 15, 197–216.

  44. King, M., Meyer, G. E., Tangney, J., & Biederman, I. (1976). Shape constancy and a perceptual bias towards symmetry.Perception & Psychophysics, 19, 129–136.

  45. Koenderink, J. J. (1986). Optic flow.Vision Research, 26, 161–180.

  46. Koenderink, J. J., & van Doorn, A. J. (1978). How an ambulant observer can construct a model of the environment from the geometrical structure of the visual inflow. In G. Hauske & E. Butenandt (Eds.),Kybernetik 1978 (pp. 224–247). Munich: Oldenburg.

  47. Kopfermann, H. (1930). Psychologische Untersuchungen über die Wirkung zweidimensionaler Darstellungen körperlicher Gebilde.Psychologische Forschung, 13, 293–364.

  48. Lowe, D. G. (1987). Three-dimensional object recognition from single two-dimensional images.Artificial Intelligence, 31, 355–395.

  49. Marr, D. (1982).Vision: A computational investigation into the human representation and processing of visual information. San Francisco, CA: Freeman.

  50. Massaro, D. W. (1988a). Some criticisms of connectionist models of human performance.Journal of Memory and Language, 27, 213–234.

  51. Massaro, D. W. (1988b). Ambiguity in perception and experimentation.Journal of Experimental Psychology: General, 117, 417–421.

  52. McClelland, J. L., & Rumelhart, D. E. (1985). Distributed memory and the representation of general and specific information.Journal of Experimental Psychology: General, 114, 159–188.

  53. Metelli, F. (1985). Stimulation and perception of transparency.Psychological Research, 47, 185–202.

  54. Navon, D. (1989). The importance of being visible: On the role of attention in a mind viewed as an anarchic intelligence system. I. Basic tenets.European Journal of Cognitive Psychology, 1, 191–213.

  55. Palmer, S. E. (1987). PDP: A new paradigm for cognitive theory.Contemporary Psychology, 32, 925–928.

  56. Palmer, S. E., & Hemenway, K. (1978). Orientation and symmetry: Effects of multiple, rotational, and near symmetries.Journal of Experimental Psychology: Human Perception and Performance, 4, 691–702.

  57. Petersik, J. T. (1987). Recovery of structure from motion: Implications for a performance theory based on the structure-from-motion theorem.Perception & Psychophysics, 42, 355–364.

  58. Ramachandran, V. S. (1985). The neurobiology of perception (Guest editorial in special issue on human motion perception).Perception, 14, 97–103.

  59. Ramachandran, V. S. (1988). Perceiving shape from shading.Scientific American, 258, 76–83.

  60. Rock, I. (1974). The perception of disoriented figures.Scientific American, 230, 78–85.

  61. Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986). Schemata and sequential thought processes in PDP models. In J. L. McClelland, D. E. Rumelhart, & the PDP Research Group,Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 2, pp. 7–57). Cambridge, MA: MIT Press/Bradford Books.

  62. Runeson, S. (1977). On the possibility of “smart” perceptual mechanisms.Scandinavian Journal of Psychology, 18, 172–179.

  63. Sejnowski, T. J., Kienker, P. K., & Hinton, G. E. (1986). Learning symmetry groups with hidden units: Beyond the perception.Physica, 22D, 260–275.

  64. Shepard, R. N. (1984). Ecological constraints on internal representation: Resonant kinematics of perceiving, imaging, thinking, and dreaming.Psychological Review, 91, 417–447.

  65. Stevens, K. A. (1979). Surface perception by local analysis of texture and contour. PhD Dissertation (Technical Report 512). Cambridge, MA: MIT Al Laboratory.

  66. Stevens, K. A. (1980). The information content of texture gradients.Biological Cybernetics, 42, 95–105.

  67. Stevens, K. A. (1983). Surface tilt (the direction of slant): A neglected psychophysical variable.Perception & Psychophysics, 33, 241–250.

  68. Stevens, K. A. (1984). On gradients and texture “gradients”.Journal of Experimental Psychology: General, 113, 217–220.

  69. Stevens, K. A., & Brookes, A. (1987). Detecting structure by symbolic constructions on tokens.Computer Vision, Graphics, and Image Processing, 37, 238–260.

  70. Terzopoulos, D. (1986). Integrating visual information from multiple sources. In A. P. Pentland (Ed.),From pixels to predicates: Recent advances in computational and robotic vision (pp. 111–142). Norwood, NJ: Ablex.

  71. Todd, J. T. (1981). Visual information about moving objects.Journal of Experimental Psychology: Human. Perception and Performance, 7, 795–810.

  72. Todd, J. T. (1982). Visual information about rigid and non-rigid motion: A geometric analysis.Journal of Experimental Psychology: Human Perception and Performance, 8, 238–252.

  73. Todd, J. T. (1984). The perception of three-dimensional structure from rigid and non-rigid morion.Perception & Psychophysics, 36, 97–103.

  74. Todd, J. T. (1985). The perception of structure from motion: Is projective correspondence of moving elements a necessary condition?Journal of Experimental Psychology: Human Perception and Performance, 11, 689–710.

  75. Todd, J. T., & Akerstrom, R. A. (1987). Perception of three-dimensional form from patterns of optical texture.Journal of Experimental Psychology: Human Perception and Performance, 13, 242–255.

  76. Todd, J. T., & Mingolla, E. (1983). Perception of surface curvature and direction of illumination from patterns of shading.Journal of Experimental Psychology: Human Perception and Performance, 9, 583–595.

  77. Todd, J. T., & Reichel, F. D. (1989). Ordinal structure in the visual perception and cognition of smoothly curved surfaces.Psychological Review, 96, 643–657.

  78. Todd, J. T., Akerstrom, R. A., Reichel, F. D., & Hayes, W. (1988). Apparent rotation in three-dimensional space: Effects of temporal, spatial, and structural factors.Perception & Psychophysics, 43, 179–188.

  79. Treisman, A. (1988). Features and objects: The 14th Bartlett Memorial Lecture.Quarterly Journal of Experimental Psychology, 40A, 201–237.

  80. Ullman, S. (1980). Against direct perception.Behavioral and Brain Sciences, 3, 373–415.

  81. Uttal, W. R., Davis, N. S., Welke, C., & Kakarala, R. (1988). The reconstruction of static visual forms from sparse dotted samples.Perception & Psychophysics, 43, 223–240.

  82. Wagemans, J. (1988). Modules in vision: A case study of interdisciplinarity in cognitive science.Acta Psychologica, 67, 59–93.

  83. Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing.Journal of Experimental Psychology: Human Perception and Performance, 10, 683–703.

  84. Warren, W. H., & Shaw, R. E., (Eds.) (1985).Persistence and change: Proceedings of the First International Conference on Event Perception. Hillsdale, NJ: Erlbaum.

  85. Warren, W. H., Morns, M. W., & Kalish, M. (1988). Perception of translational heading from optical flow.Journal of Experimental Psychology: Human Perception and Performance, 14, 646–660.

  86. Weert, C. M. M., de (1984). Veridical perception: A key to the choice of colours and brightnesses in multicolour displays. In P. Gibson (Ed.),Monochrome vs. colour in electronic displays (pp. 18.1.-18.8). Farnborough, UK: NATO.

  87. Wittebrood, J. E. M., Wansink, M. G., de Weert, C. M. M. (1981). A versatile color stimulus generator.Perception, 10, 63–69.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wagemans, J. “Smart” mechanisms emerging from cooperation and competition between modules. Psychol. Res 52, 181–196 (1990). https://doi.org/10.1007/BF00877527

Download citation

Keywords

  • Empirical Data
  • Main Theme
  • Chance Level
  • Intelligence Agency
  • Physical Constraint