Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Natural recolonization of a productive tropical pond: Day to day variations in the photosynthetic parameters

  • 36 Accesses

  • 7 Citations

Abstract

Chlorophyll pigments (CHL), primary productivity (PP) and particulate nitrogen (Np) in relation to several environmental factors were monitored during planktonic colonization of an aquaculture pond (Layo, Côte d'Ivoire). How interactions between the organisms are established in an initially azoic environment were investigated. From March, 15 (D1) to March, 31 (D16), the system transformation went through three stages. First, a precolonization by heterotrophic microbial community from D1 to D2 (Np < 1 μm maximum at D2: 243 mg m−2; CHL around 0). Then, a pioneer microalgal community developped from D3 to D7 (maximum CHL on D6: 19 mg m−2; PP: 1.0 g C m−2 d−1) with a significant contribution of picoplankton (CHL and PP < 3 μm: 33 and 23% of the total, respectively). Finally, a second microalgal colonization was noticed from D9 to D12 (maximum CHL: 55 mg m−2, PP: 2.8 g C m−2 d−1), largely dominated by nanoplankton (CHL and PP > 3 μm: 95 and 99% of the total, respectively). Overall, photosynthetic activity appeared to be closely linked to algal biomass. The study of autotrophic biomass and activity in different size classes in relation to the other parameters allowed us to precise the origin of the biomass fluctuations. The first bloom appeared to be controlled by selective grazing on small algae. The second algal development ended when N requirement represented at least 69% of N supply (in the N — NH4 form). This control was enhanced by the appearance of rotifers, leading to a more complex equilibrium.

This is a preview of subscription content, log in to check access.

References

  1. Almagan, G. and C. E. Boyd, 1980. Plankton production and Tilapia yield in ponds. Aquaculture 15:75–77.

  2. Arce, R. G. and C. E. Boyd, 1975. Effects of agricultural limestone on water chemistry, phytoplankton productivity and fish production in soft water ponds. Trans. Am. Fish. Soc. 104:308–312.

  3. Arfi, R. and D. Guiral. Contrôle de la biomasse phytoplanctonique par le microzooplancton dans un étang en phase de recolonisation (Layo, Côte d'Ivoire). submitted.

  4. Bannister, T. T. 1974. Production equations in terms of chlorophyll concentration, quantum yield and upper limit to production. Limnol. Oceanogr., 19:1–12.

  5. Bienfang, P. K. and J. P. Szyper, 1981. Phytoplankton dynamics in the subtropical Pacific ocean off Hawai. Deep-Sea Res. 28:981–1000.

  6. Bienfang, P. K. and M. Takahashi, 1983. Ultraplankton growth rates in a subtropical ecosystem. Mar. Biol. 76:213–218.

  7. Costella, A. C., K. S. Shortreed, and J. G., Stockner, 1979. Phytofractionation studies in Great Central Lake, British Columbia, a nutrient enriched sockeye salmon (Oncorhynchus nerka) nursery lake. Fish. Mar. Serv. Tech. Rep. 880:27 pp.

  8. Côté, B. and T. Platt, 1983. Day to day variations in the spring-summer photosynthetic parameters of coastal marine phytoplankton. Limnol. Oceanogr. 28:320–344.

  9. Dubinsky, Z. and T. Berman, 1981. Light utilization by phytoplankton in Lake Kinneret (Israel). Limnol. Oceanogr. 26:660–670.

  10. Dubinsky, Z., T. Berman, and F. Schanz, 1984. Field experiments for in situ measurements of photosynthetic efficiency and quantum yield. J. Plankton Res. 6:339–349.

  11. Dufour, P., 1984. Production primaire d'une lagune tropicale (Ebrié, Côte d'Ivoire). Facteurs naturels et anthropiques. Doctorat Thesis, University Pierre et Marie-Curie, Paris.

  12. Gran, G., 1952. Determination of the equivalent point in potentiometric titrations, part II. Analyst 77:661–671.

  13. Grasshoff, K. and H. Johannsen, 1972. A new sensitive and direct method for the automatic determination of ammonia in sea water. J. Cons. Int. Explor. mer 34:516–521.

  14. Guiral, D. and A. Ferhi. Nature and origin of water in Layo aquaculture ponds (Côte d'Ivoire). submitted.

  15. Guiral, D., R. Arfi, and J. P. Torréton. Metabolisme de l'azote lors de la phase de colonisation d'un étang d'aquaculture saumâtre. submitted.

  16. Hem, S., M. Legendre, L. Trebaol, A. Cisse, and Y. Moreau, 1990. Recherches sur les principales espèces d'interêt aquacole en milieu lagunaire. In: J. R. Durand, Dufour, P., and Zabi, S. G. (eds.), Environnement et ressources aquatiques de Côte d'Ivoire. 2 Le milieu lagunaire. Editions de l'ORSTOM, sous presse.

  17. Hepher, B., 1962. Primary production in fishponds and its application to fertilization experiments. Limnol. Oceanogr. 7:131–136.

  18. Hunt, D. and C. E. Boyd, 1981. Alkalinity losses from ammonium fertilizers used in fish ponds. Trans. Am. Fish. Soc. 110:81–85.

  19. Jitt, H. R., A. Morel, and Y. Saijo, 1976. The relation of oceanic primary production to available photosynthetic irradiance. Australian J. Mar. Freshwater. Res. 27:441–454.

  20. Kononova, M. M., 1961. Soil organic matter, its nature, its role in soil formation and in soil fertility. Pergamon Press, London, 450 pp.

  21. Kirk, J. T. O., 1983. Light and photosynthesis in aquatic ecosystems, Cambridge Univ. Press, N. Y., 401 pp.

  22. Legendre, M., M. Pagano, and L. Saint-Jean, 1987. Peuplements et biomasse zooplanctonique dans des étangs de pisciculture lagunaire (Layo, Côte d'Ivoire). Etude de la recolonisation après la mise en eau. Aquaculture 67:321–341.

  23. Li, W. K. W., D. V. Subba Rao, W. G. Harrison, J. C. Smith, J. J. Cullen, B. Irwin, and T. Platt, 1983. Autotrophic picoplankton in the tropical ocean. Science 219:292–295.

  24. Monteny, B. A., 1984. Données climatiques recueillies à la station ORSTOM d'Adiopodoumé (Côte d'Ivoire), 1948–1984. Doc. ORSTOM Adiopodoumé, 45 pp.

  25. Morel, A., 1978. Available, usable and stored radiant energy in relation to marine photosynthesis. Deep sea Res. 25:673–688.

  26. Moriarty, D. J. W., H. L. Cook, R. Bin Hassan, and M. Thanabal, 1983. Primary production and meiofauna in some penaeid prawn aquaculture ponds at Gelang Patah. Malay. Ag. J. 54:37–51.

  27. Motzkin, F., Y. Cohen, H. Gordin, and E. Padan, 1982. Productivity relations in seawater fish ponds: a comparison of stocked and unstocked ponds. Mar. Ecol. Prog. Ser. 8:203–210.

  28. Munawar, M. and G. L. Fahnenstiel, 1982. The abundance and significance of ultraplankton and microalgae at an offshore station in Central Lake Superior. Can. Tech. Rep. Fish. Aquat. Sci. 1153:1–13.

  29. Neilson, A. H. and T. Larson, 1980. The utilization of organic nitrogen for growth of algae. Physiological aspects. Physiol. Plant. 48:542–553.

  30. Pagès, J., L. Lemasson, and P. Dufour, 1981. Primary production measurement in a brackish tropical lagoon. Effect of light, as studied at some stations by the14C method. Rev. Hydrobiol. trop. 14:3–15.

  31. Parsons, T. R., R. K. Stephens, and J. D. M. Strickland, 1961. On the chemical composition of eleven species of marine phytoplankton. J. Fish. Res. Board Can. 18:1001–1016.

  32. Platt, T., 1969. The concept of energy efficiency in primary production. Limnol. Oceanogr. 14:653–659.

  33. Platt, T., D. V. Subba-Rao, and B. Irwin, 1983. Photosynthesis of picoplankton in the oligotrophic ocean. Nature (Lond.) 301:702–704.

  34. Putt, M. and B. Prezelin, 1985. Diurnal patterns of photosynthesis in cyanobacteria and nanoplankton in California coastal waters during “El Nino”. J. Plankton Res. 7:779–790.

  35. Schindler, D. W. and G. W. Comita, 1972. The dependance of primary production upon physical and chemical factors in a small senescing lake, including the effects of complete winter oxygen depletion. Arch. Hydrobiol. 69:413–451.

  36. Stockner, J. G. and N. J. Antia, 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can J. Fish Aquat. Sci. 43:2472–2503.

  37. Stumm, W. and J. J. Morgan, 1970. Aquatic chemistry. Wiley Interscience, N. Y., 583 pp.

  38. Talling, J. F., R. B. Wood, M. W. Prosser, and R. M. Baxter, 1973. The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopia soda lakes. Freshwater Biol. 3:53–76.

  39. Yentsch, C. S. and D. W. Menzel, 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea res. 10:221–231.

  40. Zur, O., 1981. Primary production in intensive fish ponds and a complete organic carbon balance in the ponds. Aquaculture, 23:197–210.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arfi, R., Guiral, D. & Torreton, J. Natural recolonization of a productive tropical pond: Day to day variations in the photosynthetic parameters. Aquatic Science 53, 39–54 (1991). https://doi.org/10.1007/BF00877074

Download citation

Key words

  • Primary production
  • recolonization
  • trophic relationships
  • tropical pond