Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Complexities of rock fracture and rock friction from deformation of Westerly granite

  • 196 Accesses

  • 5 Citations

Abstract

A series of rock friction experiments has been carried out to study the complexities in rock fracture and rock friction. Intact Westerly granite samples were loaded to shear failure in a laboratory polyaxial loading apparatus. The resultant fractured samples were reloaded to cause frictional sliding. Both polyaxial loading (σ1 > σ2 > σ3 > 0) and equal confining condition (σ1 > σ2 = σ3 > 0) were used. The deformation processes were monitored by macroscopic axial stress-strain, optical holography, and ultrasonic velocity measurements.

Intense localized deformation along the fracture occurred very early in the loading of fractured samples. Contacts on the fracture surfaces continuously broke during loading. No acoustic velocity anomaly was observed for the fractured sample, in contrast to a ∼25% drop in the velocity before the failure of the corresponding intact sample. The current study and previous research suggest that the deformation localization is an important process in governing the instability of rock friction. Instability analysis of rock friction needs to include not only the deformation processes along the sliding surfaces, but also those adjacent to the fractures such as the localized deformation along the fractures observed in the current study. The instability analysis of rock friction with rate- and state-dependent friction laws does not specifically include the deformation localization adjacent to the faults and thus ignores an important class of instability as described byRudnicki (1977).

A dependence of frictional strengths on the stress components normal to the sliding and in the plane of the fracture surface was observed. This dependence can be understood by considering the loading of the irregular fracture surface under polyaxial loading conditions. This observation requires the friction laws in the macroscopic scale to be modified for those cases where the three principal stresses (σ1, σ2, and σ3) are significantly different.

This is a preview of subscription content, log in to check access.

Bibliography

  1. Bieniawski, Z. T. (1967),Mechanism of Brittle Fracture of Rock: Part I. Theory of the Fracture Process, Part II. Experimental Studies, Part III. Fracture in Tension and under Long-term Loading, Int. J. Rock Mech. Min. Sci.4, 395–430.

  2. Birch, F. (1960),The Velocity of Compressional Waves in Rocks to 10 Kilobars. Part 1, J. Geophys. Res.65, 1083–1102.

  3. Birch, F. (1961),The Velocity of Compressional Waves in Rocks to 10 Kilobars. Part 2, J. Geophys. Res.66, 2199–2224.

  4. Brace, W. F. (1965),Some New Measurements of Linear Compressibility of Rocks, J. Geophys. Res.70, 391–398.

  5. Brodsky, N. S. (1985),An Investigation of the Fracture of Granite under Triaxial Stress. Ph.D Thesis, University of Colorado at Boulder, Colorado.

  6. Brown, E. T., andHoek, J. (1978),Trends in Relationships between Measured in situ Stresses and Depth, Int. J. Rock Mech. Min. Sci.15, 211–215.

  7. Brown, S. R. (1987),Fluid Flow through Rock Joints: The Effect of Surface Roughness, J. Geophys. Res.92, 1337–1347.

  8. Brown, S. R., andScholz, C. H. (1985),Broad Bandwidth Study of the Topography of Natural Rock Surfaces, J. Geophys. Res.90, 12575–12582.

  9. Brown, S. R., Kranz, R. L., andBonner, B. P. (1986),Correlation between the Surfaces of Natural Rock Joints, Geophys. Res. Lett.13, 1430–1433.

  10. Byerlee, J. D. (1967),Friction Characteristics of Granite under High Confining Pressure, J. Geophys. Res.72, 3639–3648.

  11. Byerlee, J. D. (1978),Friction of Rocks, Pure and Appl. Geophys.116, 615–626.

  12. Byerlee, J. D., andVaughan, P. (1984),Dependence of Friction on Slip Velocity in Water Saturated Granite with Added Gouge (Abstract), EOS, Trans. Am. Geophys. Union65, 1078.

  13. Chen, G.-L., andSpetzler, H. (1993),Topographic Characteristics of Laboratory Induced Shear Fractures, Pure and Appl. Geophys.140, 123–135.

  14. Cox, S. J. D., andScholz, C. H. (1988),On the Formation and Growth of Faults: An Experimental Study, J. Struct. Geol.10, 413–430.

  15. Dieterich, J. H. (1972),Time-dependent Friction in Rocks, J. Geophys. Res.77, 3690–3697.

  16. Dieterich, J. (1978),Time-dependent Friction and the Mechanics of Stick-Slip, Pure and Appl. Geophys.116, 790–806.

  17. Dieterich, J. H. (1979),Modeling of Rock Friction, 1. Experimental Results and Constitutive Equation, J. Geophys. Res.84, 2162–2168.

  18. Dieterich, J.,Constitutive properties of faults with simulated gouge. InMechanical Behavior of Crustal Rocks, AGU Geophys. Mono. 24 (eds. Carter, N. L., Friedman, M., Logan, J. M., and Stearns, D. W.) (Washington, D.C., AGU, 1981) pp. 103–120.

  19. Dieterich, J. H., andConrad, G. (1984),Effect of Humidity on Time- and Velocity-dependent Friction in Rocks, J. Geophys. Res.89, 4196–4202.

  20. Granryd, L. A. (1981),Path Dependence of Acoustic Velocity and Attenuation in Experimentally Deformed Westerly Granite, M.S. Thesis, University of Colorado.

  21. Granryd, L., Getting, I. C., andSpetzler, H. A. (1983),Path Dependence of Acoustic Velocity and Attenuation in Experimentally Deformed Westerly Granite, Geophys. Res. Lett.10, 71–74.

  22. Gu, J. C., Rice, J. R., Ruina, A. L., andTse, S. T. (1984),Slip Motion and Stability of a Single Degree of Freedom Elastic System with Rate and State Dependent Friction. J. Mech. Phys. Solid.32, 167–196.

  23. Hadley, K. (1975),Azimuthal Variation of Dilatancy, J. Geophys. Res.80, 4845–4850.

  24. Hadley, K. (1976),Comparison of Calculated and Observed Crack Densities and Seismic Velocities in Westerly Granite, J. Geophys. Res.81, 3484–3494.

  25. Hallbauer, D. K., Wagner, H., andCook, N. G. W. (1973),Some Observations Concerning the Microscopic and Mechanical Behavior of Quartzite Specimens in Stiff, Triaxial Compression Tests, Int. J. Rock Mech. Min. Sci.10, 713–726.

  26. Handin, J., Heard, H. C., andMagouirk, J. N. (1967),Effects of the Intermediate Principal Stress on the Failure of Limestone, Dolomite, and Glass at Different Temperatures and Strain Rates, J. Geophys. Res.72, 611–640.

  27. Hoenig, A. (1979),Elastic Moduli of a Nonrandomly Cracked Body, Int. J. Solids Struct.15, 137–154.

  28. Jaeger, J. C., andCook, N. G. W.,Fundamentals of Rock Mechanic (Halsted Press, John Wiley and Sons, Inc., New York 1976).

  29. Kranz, R. L. (1979),Crack Growth and Development during Creep of Barre Granite, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.16, 23–35.

  30. Lindner, E. N., andHalpern, J. A. (1978),In situ Stress in North America: A Compilation, Int. J. Rock Mech. Min. Sci.15, 183–203.

  31. Liu, H. P., andLivanos, A. C. R. (1976),Dilatancy and Precursory Bulging along Incipient Fracture Zones in Uniaxially Compressed Westerly Granite, J. Geophys. Res.81, 3495–3510.

  32. Lockner, D., andByerlee, J. D.,Acoustic emission and fault formation in rocks. InProc. 1st Conf. AE/Microseismic Activity Geol. Struct. Mat. (eds. Hardy, H. R., and Leighton, F. W.) June 1975 (Penn. State Univ. Clausthal: Trans. Tech. Publ., 1977) pp. 99–107.

  33. Lockner, D. A. andByerlee, J. D. (1985),A Case for Displacement-dependent Instabilities in Rock (Abstract), EOS, Trans. Am. Geophys. Union66 (46), 1100.

  34. Lockner, D. A., Summers, R., andByerlee, J. D. (1986),Effects of Temperature and Sliding Rate on Frictional Strength of Granite, Pure and Appl. Geophys.124, 445–469.

  35. Lockner, D. A., Moore, D. E., andReches, Z.,Microcrack interaction leading to shear fracture. InProc. 33rd U.S. Symp. Rock Mech. (eds. Tillerson, J. R., and Wawersik, W. R.) June 3–5, 1992, Santa Fe, New Mexico (A. A. Balkema, Netherlands 1992) pp. 807–816.

  36. Logan, J. M., andRauenzahn, K. A. (1987),Frictional Dependence of Gouge Mixtures of Quartz and Montmorillonite on Velocity, Composition and Fabric, Tectonophys.144, 87–108.

  37. Marone, C., Raleigh, B., andScholz, C. H. (1990),Frictional Behavior and Constitutive Modeling of Simulated Fault Gouge, J. Geophys. Res.95, 7007–7025.

  38. Mogi, K. (1967),Effect of the Intermediate Principal Stress on Rock Failure, J. Geophys. Res.72, 5117–5131.

  39. Mogi, K. (1971),Fracture and Flow of Rocks under High Triaxial Compression, J. Geophys. Res.76, 1255–1269.

  40. Mogi, K. (1977),Dilatancy of Rocks under General Triaxial Stress States with Special Reference to Earthquake Precursors, J. Phys. Earth25 (Suppl.), S203–217.

  41. Moore, D. E., Summers, R., andByerlee, J. D.,Relationship between textures and sliding motion of experimentally deformed gouge: Application to fault zone behavior. InKey Questions in Rock Mechanics, Proc. 29th U.S. Rock Mech. Symp. (eds. Cundall, P. A., Sterling, R. L., and Starfield, A. M.) June 13–15, 1988, University of Minnesota, Minneapolis (A. A. Balkema, Netherlands 1988) pp. 103–110.

  42. Nolte, D. D., Pyrak-Nolte, L. J., andCook, N. G. W. (1989),The Fractal Geometry of Flow Paths in Natural Fractures in Rock and the Approach to Percolation, Pure and Appl. Geophys.131, 111–138.

  43. Nur, A., andSimmons, G. (1969),Stress-induced Velocity Anisotropy in Rock: An Experimental Study, J. Geophys. Res.74, 6667–6674.

  44. O'Connell, R. J., andBudiansky, B. (1974),Seismic Velocities in Dry and Saturated Cracked Rock, J. Geophys. Res.79, 5412–5426.

  45. Obert, L., andStephenson, D. E. (1965),Stress Conditions under which Discing Occurs, Soc. Min. Engrgs. Trans. Sept., 227–234.

  46. Ohnaka, M. (1975),Frictional Characteristics of Typical Rocks., J. Phys. Earth23, 87–112.

  47. Ohnaka, M., andKuwahara, Y. (1990),Characteristic Features of Local Breakdown near a Crack-tip in the Transition Zone from Nucleation to Unstable Rupture during Stick-slip Shear Failure, Tectonophys.175, 197–220.

  48. Okubo, P. G., andAki, K. (1987),Fractal Geometry in the San Andreas Fault System, J. Geophys. Res.92, 345–355.

  49. Okubo, P. G., andDieterich, J. H. (1984),Effects of Physical Fault Properties on Frictional Instabilities Produced on Simulated Faults, J. Geophys. Res.89, 5817–5827.

  50. Power, W. L., Tullis, T. E., Brown, S. R., Boitnott, G. N., andScholz, C. H. (1987),Roughness of Natural Fault Surfaces, Geophys. Res. Lett.14, 29–32.

  51. Pyrak-Nolte, L. J., Myer, L. R., andCook, N. G. W. (1990),Transmission of Seismic Waves across Single Natural Fractures, J. Geophys. Res.95, 8617–8638.

  52. Pyrak-Nolte, L. J., Xu, J., andHaley, G. M.,Elastic interface waves along a fracture: Theory and experiment. InProc. 33rd U.S. Symp. Rock Mech. (eds. Tillerson, J. R., and Wawersik, W. R.) June 3–5, 1992, Sante Fe, New Mexico (A. A. Balkema, Netherlands 1992) pp. 999–1007.

  53. Rice, J. R., andRuina, A. L. (1983),Stability of Steady Frictional Sliding, J. Appl. Mech.50, 343–349.

  54. Rudnicki, J. W. (1977),The Inception of Faulting in a Rock Mass with a Weakened Zone, J. Geophys. Res.82, 844–854.

  55. Rudnicki, J. W., andRice, J. R. (1975),Conditions for the Localization of Deformation in Pressure-sensitive Dilatant Materials, J. Mech. Phys. Solids23, 371–394.

  56. Ruina, A. L. (1983),Slip Instability and State Variable Friction Laws, J. Geophys. Res.88, 10359–10370.

  57. Scholz, C. H. (1968),Microfracturing and the Inelastic Deformation of Rock in Compression, J. Geophys. Res.73, 1417–1432.

  58. Scholz, C. H., andAviles, C. A.,The fractal geometry of faults and faulting. InEarthquake Source Mechanics, AGU Geophys. Mono. 37 (eds. Das, S., Boatwright, J., and Scholz, C. H.) (AGU, Washington, D.C. 1986) pp. 147–155.

  59. Scholz, C. H., andKoczynski, T. A. (1979),Dilatancy Anisotropy and the Response of Rock to Large Cyclic Loads, J. Geophys. Res.84, 5525–5534.

  60. Scholz, C. H., Molnar, P., andJohnson, T. L. (1972),Detailed Studies of Frictional Sliding of Granite and Implications for the Earthquake Mechanism, J. Geophys. Res.77, 6392–6406.

  61. Shimamoto, T., andLogan, J. M. (1984),Laboratory Friction Experiments and Natural Earthquakes: An Argument for Long-term Tests, Tectonophys.109, 165–175.

  62. Shimamoto, T., andLogan, J. M.,Velocity dependent behavior of simulated halite shear zones: An analog for silicates. InEarthquake Source Mechanics, AGU Geophys. Mono. 37 (eds. Das, S., Boatwright, J., and Scholz, C. H.) (AGU, Washington, D.C. 1986) pp. 49–63.

  63. Siegfried, R., andSimmons, G. (1978),Characterization of Oriented Cracks with Differential Strain Analysis, J. Geophys. Res.83, 1269–1278.

  64. Simmons, G., andBrace, W. F. (1965),Comparison of Static and Dynamic Measurements of Compressibility of Rocks, J. Geophys. Res.70, 5649–5656.

  65. Sobolev, G., Spetzler, H., andSalov, B. (1978),Precursors to Failure in Rocks while Undergoing Anelastic Deformation, J. Geophys. Res.83, 1775–1784.

  66. Solberg, P., andByerlee, J. D. (1984),A Note on the Rate Sensitivity of Frictional Sliding of Westerly Granite, J. Geophys. Res.89, 4203–4205.

  67. Sondergeld, C. H., Granryd, L. A., andSpetzler, H. A. ({dy1979}),Compressional velocity measurements for a highly fractured lunar anorthosite. InProc. Lunar Planet. Sci. Conf. 10th, pp. 2147–2154.

  68. Spetzler, H. (1987),Rock Fracture and Frictional Sliding, Methods Experim. Phys.24, 131–183.

  69. Spetzler, H., andMartin III, R. J. (1974),Correlation of Strain and Velocity during Dilatancy, Nature252, 30–31.

  70. Spetzler, H., Sobolev, G. A., Salov, B. G., Getting, I. C., andKoltsov, A. (1981),Surface Deformation Crack Formation and Acoustic Velocity Changes in Pyrophyllite under Polyaxial Loading, J. Geophys. Res.86, 1070–1080.

  71. Spetzler, H., Sobolev, G. A., andGetting, I. C.,Holography in laboratory experiments pertinent to rock deformation and failure. InLaser Holography in Geophysics (ed. Takemoto, S.) (Halsted Press, John Wiley and Sons Inc., New York 1989) pp. 31–105.

  72. Spetzler, H., Sobolev, G., Koltsov, A., Zang, A., andGetting, I. C. (1991),Some Properties of Unstable Slip on Rough Surfaces, Pure and Appl. Geophys.137, 1–18.

  73. Spetzler, H., Sondergeld, C., Sobolev, G., andSalov, B. (1987),Seismic and Strain Studies on Large Laboratory Rock Samples Being Stressed to Failure, Tectonophys.144, 55–68.

  74. Summers, R., Lockner, D., andByerlee, J. (1985),Temperature and Velocity Dependence of Friction in Granite (Abstract), EOS, Trans. Am. Geophys. Union66 (46), 1100.

  75. Tapponnier, P., andBrace, W. F. (1976),Development of Stress-induced Microcracks in Westerly Granite, Int. J. Rock Mech. Min. Sci.13, 103–112.

  76. Teufel, L. W.,Pore volume changes during frictional sliding of simulated faults. InMechanical Behavior of Crustal Rocks, AGU Geophys. Mono. 24 (eds. Carter, N. L., Friedman, M., Logan, J. M., and Stearns, D. W.) (AGU, Washington, D.C. 1981) pp. 135–145.

  77. Teufel, L. W.:Permeability changes during shear deformation of fractured rock. InProc. 28th U.S. Rock Mech. Symp. (eds. Farmer, I. W., Daemen, J. J. K., Desai, C. S., Glass, C. E., and Neuman, S. P.) 29 June–1 July 1987, University of Arizona, Tucson (A. A. Balkema, Netherlands 1987) pp. 473–480.

  78. Thill, R. E.,Acoustic methods for monitoring failure in rock. InNew Horizons in Rock Mechanics, Proc. 14th U.S. Rock Mech. Symp. (eds. Hardy, H. R. Jr., and Stefanko, R.) June 1972, Penn. State Univ. (Am. Soc. Civ. Eng., New York 1973) pp. 649–687.

  79. Tullis, T. E., andWeeks, J. D. (1986),Constitutive Behavior and Stability of Frictional Sliding of Granite, Pure and Appl. Geophys.124, 383–414.

  80. Wang, C.-Y., Goodman, R. E., andSundaram, P. N. (1975),Variations of Vp and Vs in Granite Premonitory to Shear Rupture and Stick-slip Sliding: Application to Earthquake Prediction, Geophys. Res. Lett.2, 309–311.

  81. Weeks, J. D., Reinen, L. A., Tullis, T. E., andBlanpied, M. L. (1988),Friction Constitutive Behavior of Serpentinite (Abstract), EOS, Trans. Am. Geophys. Union69, 1463.

  82. Willis J. R. (1977),Bounds and Self-consistent Estimates for the Overall Properties of Anisotropic Composites, J. Mech. Phys. Solids25, 185–202.

  83. Wong, T.-F. (1982),Micromechanics of Faulting in Westerly Granite, Int. J. Rock Mech. Min. Sci.19, 49–64.

  84. Wong, T.-F., andZhao, Y. (1990),Effects of Load Point Velocity on Frictional Instability Behavior, Tectonophys.175, 177–195.

  85. Zoback, M. L., andZoback, M. D. (1980),State of Stress in the Conterminous United States, J. Geophys. Res.85, 6113–6156.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, G., Spetzler, H. Complexities of rock fracture and rock friction from deformation of Westerly granite. PAGEOPH 140, 95–121 (1993). https://doi.org/10.1007/BF00876873

Download citation

Key words

  • Shear fracture
  • frictional yield
  • polyaxial loading
  • localized deformation