Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Investigation of the initial condensation stage of cloud formation in the chamber

Summary

The experimental results on the initial condensation stage simulating droplet spectrum formation in the 3200 m3 volume chamber are presented. In the chamber the air was cooled at the velocities corresponding to those of the upstreamu z ≈15–120 cm/s. From the measurements of condensation nuclei-supersaturation spectra and the droplet concentrationN of the developing fog at givenu z maximum supersaturation valuesδ max , which do not exceed 1·10−3 atu z ≈15 cm/s and 6·10−3 atu z ≈100 cm/s, are estimated. The experimental valuesN andδ max are compared with the computed ones on the basis of regular condensation theory at the initial stage of cloud formation, when the droplet diffusion growth is considered. Experimental valuesN andδ max appeared to be greater than the computed ones. The experimentally obtained dependencesN (u z ) andδ max N (u z ) are approximated satisfactorily by degree functions, but exponents proved to be greater than it follows from the known theoretical presentations.

анномачуuи

в статБе описБьвается методика и приводятся резулБтатБь зкспериментов ио моделированию началБной конденсационной стадии формирования обначното спектр¶ в камере обБемом 3200 м3. Охнаждение возцуха в камере проводилосБ со скоростями, соответствуюшими скоростями восходяшего потокаu z ≈15–120 см/сек. Из измерений спектров ядер конденсации по пересБьщениям и измерений концентрацнн ядер формирющегося туманаN при задаииБьхu z оцененБь уеличинБьх пересБьщенийδ max , которБье не превБпбают. 10−3 бриu z ≈15 см/сек и 6·10−3 приu z ≈100 см/сек.

ЭксперименталБно найденнБье значенияN δ max сравненБь с рассчитаннБьми. Дня расчетов испонБзованБь даннбье теории начанБной стадии конденсации в обнаках, учитБьвающей дтффузионнБьй рост капенБ (уравнепие Максвена).

ЭкспэриментанБно понученнБье значэнияN иδ max оказалисБ волБшими, чем расчефнБье. НайненнБье зксперименталБно зависимостиN (u z ) иδ max (u z ) удовлетворитенБно аппроксимируются. степеннБьми функциями, однако, показатели степениu z оказанисБ болБшими, чем зто следует из издестнБьхтеоретпческих представлений

This is a preview of subscription content, log in to check access.

References

  1. [1]

    L. G. Akuljshina, V. N. Arefjev, N. K. Nikiforova andG. I. Shchelchkov,Fotoelektritcheskij pribor dlja izmerenija spektra i kontsentratsii zhidkikh chastits aerosolja, Tr. IPG, No. 7 (1967).

  2. [2]

    E. L. Aleksandrov, L. M. Levin andY. S. Sedunov, Kondensatsionny rost kapelj rastvora, Izv. AN SSSR, ser. FAiOIII, No. 8 (1967).

  3. [3]

    A. H. Auer, A cumulus cloud design for continental air mass regimes, J. Rech. Atm.III, No. 3 (1967).

  4. [4]

    M. V. Bujkov, Kinetica geterogennoj kondensatsii pri adiabaticheskom okhlazdenii, Kolloidny zhurnalXXVIII, No. 2, No. 5 (1966).

  5. [5]

    W. E. Howell, The growth of cloud drops in uniformly cooled air, J. Met.6, No. 2 (1949).

  6. [6]

    L. G. Katchurin, L. E. Alantjeva andSya Jui-Zhenj,Kontsentratsija para i skorostj rosta kapelj kondensata v vodnykh aerosoljakh, Izv. AN SSSR, ser. geofiz., No. 9 (1961).

  7. [7]

    A. G. Laktionov, Photoelectric measurements of condensation cloud nuclei, J. Rech. Atm. IV, No. 1–2 (1968).

  8. [8]

    L. M. Levin andYu. S. Sedunov,The theoretical model of the drop spectrum formation process in clouds, Pageoph69 (1968/I), 320–335.

  9. [9]

    W. Mordy, Computation of the growth by condensation population of cloud droplets, Tellus11, No. 1 (1959).

  10. [10]

    M. Neiburger andO. W. Chin,Computations of the growth of cloud drops by condensation using an electronic degital computer. Physics of precipitation, Geophys. Monograph, No. 5 (Waverly Press, Baltimore 1960).

  11. [11]

    Yu. S. Sedunov, Kinetica nachaljnoi stadii kondensatsii v oblakakh, Izv. AN SSSR, ser. FAiO,III, No. 1 (1967).

  12. [12]

    Yu. S. Sedunov,Kinetica formirovanija oblachnogo spectra (Doktorskaja dissertatsija), Obnisk (1967).

  13. [13]

    P. Squires andS. Twomey,The relation between cloud droplet spectra and the spectrum of cloud nuclei. Physics of precipitation, Geophys. Monograph, No. 5 (Waverly Press, Baltimore 1960).

  14. [14]

    S. Twomey,The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geoph. pura e appl.43 (1959), 243–249.

  15. [15]

    S. Twomey andJ. Warner, Computation of measurements of cloud droplets and cloud nuclei, J. Atm. Sci.24, No. 6 (1967).

  16. [16]

    E. Uchida, A preliminary study a slow expansion chamber, J. Met. Soc., Japan42, No. 2 (1964).

  17. [17]

    O. A. Volkovitsky,Kompleks eksperimentalnyh ustanovok dlja geofisceskikh issledovanii, Meteorologija i gidrologija, No. 6 (1965).

  18. [18]

    O. A. Volkovitsky, L. I. Ermoshina andYu. S. Sedunov,Otsenka koeffitsienta turbulentnoi diffuzii v aerosolnoj kamere, Tr. IPG, No. 7 (1967).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Laktionov, A.G., Volkovitsky, O.A. Investigation of the initial condensation stage of cloud formation in the chamber. PAGEOPH 77, 78–88 (1969). https://doi.org/10.1007/BF00876004

Download citation

Keywords

  • Supersaturation
  • Volume Chamber
  • Cloud Formation
  • Diffusion Growth
  • Degree Function