Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Particle size distribution of cataclastic fault materials from Southern California: A 3-D study

  • 285 Accesses

  • 72 Citations


The particle size distributions of fault gouge from the San Andreas, the San Gabriel, and the Lopez Canyon faults in Southern California were measured using sieving and Coulter-Counter techniques over a range of particle sizes from 2 μm to 16 mm. The distributions were found to be power law (fractal) for the smaller fragments and log-normal by mass for sizes near and above the peak size. The apparent fractal dimensionD of the smaller particles in gouge samples from the San Andreas fault, the San Gabriel fault and the Lopez Canyon gouge were 2.4–3.6, 2.6–2.9 and 2.4–3.0, respectively. The averageD for the Lopez Canyon gouge was 2.7±0.2, which is in agreement with earlier studies of this gouge using planar 2-D sections. The fractal dimension of the finer fragments from all three faults is observed to be correlated with the peak fragment size, with finer gouges tending to have a largerD. A computer automaton is used to show that this observation may be explained as resulting from a fragmentation process which has a “grinding limit” at which particle reduction stops.

This is a preview of subscription content, log in to check access.


  1. Anderson, J. L., Osborne, R. H., andPalmer, D. F. (1980),Petrogenesis of Cataclastic Rocks wit the San Andreas Fault Zone of Southern California, U.S.A., Tectonophys.67, 221–249.

  2. Anderson, J. L., Osborne, R. H., andPalmer, D. F. (1983),Cataclastic Rocks of the San Gabriel Fault—An Expression of Deformation at Deeper Crustal Levels in the San Andreas Fault Zone, Tectonophys.98, 209–251.

  3. Biegel, R. L., Sammis, C. G., andDieterich, J. H. (1989),The Frictional Properties of a Simulated Gouge with a Fractal Particle Distribution, J. Struct. Geol.11, 827–846.

  4. Blenkinsop, T. (1991),Cataclasis and Processes of Particle Size Reduction, Pure and Appl. Geophys.136, 60–86.

  5. Byerlee, J. D. (1967),Frictional Characteristics of Granite under High Confining Pressure, J. Geophys. Res.72, 36–39.

  6. Chester, F. M., andLogan, J. M. (1987),Composite Planar Fabric of Gouge from the Punchbowl Fault, California, J. Struct. Geol.9, 621–634.

  7. Dieterich, J. H.,Constitutive properties of faults with simulated gouge. InMechanical Behavior of Crustal Rocks (eds. Carter, N. L., Friedman, M., Logan, J. M., and Stearns, D. W.) (Am. Geophys. Un. Geophys. Monogr. 24, 1981) pp. 103–120.

  8. Engelder, J. T. (1974),Cataclasis and the Generation of Fault Gouge. G.S.A. Bull.85, 1515–1522.

  9. Epstein, B. (1947),The Mathematical Description of Certain Breakage Mechanisms Leading to the Logarithmic-normal Distribution, J. Franklin Inst.244, 471–477.

  10. Kendall, K. (1978),The Impossibility of Comminuting Small Particles, Nature272, 710–711.

  11. Marone, C., andScholz, C. (1989),Particle-size Distribution and Microstructures within Simulated Fault Gouge, J. Geophys. Res.11, 799–814.

  12. Marone, C., andKilgore, B. (1993),Scaling of the Critical Slip Distance for Seismic Faulting with Shear Strain in Fault Zones, Nature362, 618–621.

  13. Milligan, T. G., andKranck, K.,Electroresistance particle size analysis. InPrinciple, Methods, and Application of Particle Size (ed. Syvitski, P. M.) (Cambridge University Press, Cambridge, 1991) pp. 109–128.

  14. Olgaard, D. L., andBrace, W. F. (1983),The Microstructure of Gouge from a Mining-induced Seismic Shear Zone, Int. J Rock Mech. Min. Sci. Geomech. Abstr.20, 11–19.

  15. Opoczky, L., andFarnady, R. (1984),Fine Grinding and States of Equilibrium, Powder Technol.39, 107–115.

  16. Prasher, C.,Crushing and Grinding Process Handbook (John Wiley & Sons Limited, New York, 1987) p. 474.

  17. Palmer, A. C., andSaderson, T. J. O. (1991),Fractal Crushing of Ice and Brittle Solids, Proc. R. Soc. London A,433, 469–477.

  18. Ruina, A. L. (1983),Slip Instability and State Variable Friction Laws, J. Geophys. Res.88, 10359–10370.

  19. Sammis, C., Osborne, R., Anderson, J., Banerdt, M., andWhite, P. (1986),Self-similar Cataclasis in the Formation of Fault Gouge, Pure and Appl. Geophys.124, 53–78.

  20. Sammis, C., King, G., andBiegel, R. (1987),The Kinematics of Gouge Deformation, Pure and Appl. Geophys.125, 777–812.

  21. Sammis, C. G., andBiegel, R. (1989),Fractals, Fault-gouge, and Friction, Pure and Appl. Geophys.131, 255–271.

  22. Sammis, C. G., andSteacy, S. J. (1994),The Micromechanics of Friction in a Granular Layer, Pure and Appl. Geophys. (this volume).

  23. Scholz, C. H. (1987),Wear and Gouge Formation in Brittle Faulting, Geology15, 493–495.

  24. Scholz, C. H., Molnar, P., andJohnson, T. (1972),Detailed Studies of Frictional Sliding of Granite and Implications for the Earthquake Mechanism, J. Geophys. Res.,77, 6392–6400.

  25. Scholz, C. H. The Mechanics of Earthquake Faulting (Cambridge University Press, Cambridge, 1990) p. 439.

  26. Shimamoto, T., andLogan, J. M. (1981),Effects of Simulated Fault Gouge on the Sliding Behavior of Tennessee Sandstone: Nonclay Gouges, J. Geophys. Res.86, 2902–2914.

  27. Shimamoto, T. (1986),A Transition between Frictional Slip and Ductile Flow Undergoing Large Shearing Deformation at Room Temperature, Science231, 711–714.

  28. Summers, R., andByerlee, J. (1977),Summary of Results of Frictional Sliding Studies at Confirming Pressures up to 6.98 kb, in Selected Rock Materials, U. S. Geol. Surv. Open-File Rept. 77-142.

  29. Wilcox, R. E., Harding, T. P., andSeely, D. R. (1973),Basic Wrench Tectonics, The American Association of Petroleum Geologists Bulletin57, 74–96.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

An, L., Sammis, C.G. Particle size distribution of cataclastic fault materials from Southern California: A 3-D study. PAGEOPH 143, 203–227 (1994). https://doi.org/10.1007/BF00874329

Download citation

Key words

  • Particle size distribution
  • fault gouge
  • power law
  • log-normal
  • fragmentation