Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Adaptations to training at the individual anaerobic threshold

Summary

The individual anaerobic threshold (Than) is the highest metabolic rate at which blood lactate concentrations can be maintained at a steady-state during prolonged exercise. The purpose of this study was to test the hypothesis that training at the Than would cause a greater change in indicators of training adaptation than would training “around” the Than. Three groups of subjects were evaluated before, and again after 4 and 8 weeks of training: a control group, a group which trained continuously for 30 min at the Than intensity (SS), and a group (NSS) which divided the 30 min of training into 7.5-min blocks at intensities which alternated between being below the Than [Than−30% of the difference between Than and maximal oxygen consumption (\(\dot VO_{2 max} \))] and above the Than (Than + 30% of the difference between Than and\(\dot VO_{2 max} \)). The\(\dot VO_{2 max} \) increased significantly from 4.06 to 4.271 · min−1 in SS and from 3.89 to 4.061-min−1 in NSS. The power output (W) at Than increased from 70.5 to 79.8%\(\dot VO_{2 max} \) in SS and from 71.1 to 80.7%\(\dot VO_{2 max} \) in NSS. The magnitude of change in\(\dot VO_{2 max} \),W at Than, %\(\dot VO_{2 max} \) at Than and in exercise time to exhaustion at the pretraining Than was similar in both trained groups. Vastus lateralis citrate synthase and 3-hydroxyacyl-CoA-dehydrogenase activities increased to the same extent in both trained groups. While all of these training-induced adaptations were statistically significant (P<0.05), there were no significant changes in any of these variables for the control subjects. These results suggest that the relative stimulus for physiological adaptation to training was similar in SS and NSS. These results also demonstrate that, when training intensity is set relative to the Than, it is the mean intensity during training that determines the extent of adaptation regardless of whether the exercise is performed intermittently or continuously.

This is a preview of subscription content, log in to check access.

References

  1. American College of Sports Medicine (1978) Position of the recommended quantity and quality of exercise for developing and maintaining fitness in healthy adults. Med Sci Sports 10

  2. Andersen P (1975) Capillary density in skeletal muscle of man. Acta Physiol Scand 95:203–205

  3. Bergström J (1962) Muscle electrolytes in man. Scand J Clin Lab Invest [Suppl] 68:1–110

  4. Coen B, Schwarz L, Urhausen A, Kindermann W (1991) Control of training in middle- and long-distance running by means of the individual anaerobic threshold. Int J Sports Med 12:519–524

  5. Coyle E, Martin W, Ehsani A, Hagberg J, Bloomfield S, Sinacore D, Holloszy J (1983) Blood lactate in some well-trained ischemic heart disease patients. J Appl Physiol 54:18–23

  6. Denis C, Dormis D, Lacour J (1984) Endurance training,\(\dot VO_{2 max} \), and OBLA: a longitudinal study of two different age groups. Int J Sports Med 5:167–173

  7. Donovan C, Brooks G (1983) Training affects lactate clearance not lactate production. Am J Physiol 244:E83-E92

  8. Doriguzzi C, Mongini T, Palmucci L, Schiffer D (1983) A new method for myofibrillar Ca++-ATPase based on the use of metachromatic dyes: its advantages in muscle fiber typing. Histochemistry 79:289–294

  9. Eddy D, Sparks K, Adelizi D (1977) The effects of continuous and interval training in women and men. Eur J Appl Physiol 37:83–92

  10. Ekblom B, Åstrand P-O, Saltin B, Stenberg J, Wallström B (1968) Effect of training on circulatory response to exercise. J Appl Physiol 24:518–528

  11. Essén B, Lindholm A, Thornton G (1980) Histochemical properties of muscle types and enzymes in skeletal muscles of standard-bred trotters of different ages. Equine Vet J 12:175–180

  12. Farrell P, Whitmore J, Coyle E, Billing J, Costill D (1979) Plasma lactate accumulation and distance running performance. Med Sci Sports Exerc 11:338–344

  13. Gaesser G, Poole D (1986) Lactate and ventilatory thresholds: disparity in time course of adaptations to training. J Appl Physiol 61:999–1004

  14. Hagberg J, Coyle E (1983) Physiological determinants of endurance performance as studied in competitive racewalkers. Med Sci Sports Exerc 15:287–289

  15. Henritze J, Weltman A, Schurrer R, Barlow K (1985) Effects of training at and above the lactate threshold on the lactate threshold and maximal oxygen uptake. Eur J Appl Physiol 54:84–88

  16. Hollman W, Rost R, Liesen H, Dufaux B, Heck B, et al (1981) Assessment of different forms of physical activity with respect to preventive and rehabilitative cardiology. Int J Sports Med 2:67–80

  17. Holloszy J (1975) Adaptation of skeletal muscle to endurance exercise. Med Sci Sports Exerc 7:155–164

  18. Hurley B, Hagberg J, Allen W, Seals D, Young J, et al (1984) Effect of training on blood lactate levels during submaximal exercise. J Appl Physiol 56:1260–1264

  19. Jansson E, Kaijser L (1977) Muscle adaptation to extreme endurance training in man. Acta Physiol Scand 100:315–324

  20. Karlsson J (1971) Lactate and phosphagen concentrations in working muscle of man. Acta Physiol Scand [Suppl] 358:721

  21. Karlsson J, Nordesjö L, Jorfeldt L, Saltin B (1972) Muscle lactate, ATP, and CP levels during exercise after physical training in man. J Appl Physiol 33:199–203

  22. Kindermann W, Simon G, Keul J (1979) The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol 42:25–34

  23. Kumagai S, Tanaka K, Matsuura Y, Hirakoba K, Asano K (1982) Relationships of the anaerobic threshold with the 5-km, 10-km and 10-mile races. Eur J Appl Physiol 49:13–23

  24. Lowry O, Passonneau J (1972) A flexible system of enzymatic analysis. Academic Press, New York

  25. Mader A (1980) The contribution of physiology to the science of coaching. In: Simri U (ed) The art and science of coaching. Wingate Institute Press, Netanya, pp 10–29

  26. McLellan T, Jacobs I (1989) Active recovery, endurance training, and the calculation of the individual anaerobic threshold. Med Sci Sports Exerc 21:586–592

  27. Novikoff A, Shin W, Drucker J (1961) Mitochondrial location of oxidative enzymes: staining results with two tetrazolium salts. J Biophys Biochem Cytol 9:57–61

  28. Poole D, Gaesser G (1985) Response of ventilatory and lactate thresholds to continuous and interval training. J Appl Physiol 58:1115–1121

  29. Saltin B, Essen B, Pedersen P (1976) Intermittent exercise: its physiology and some practical applications. In: (eds) Advances in exercise physiology. Karger, Basel, pp 23–51

  30. Seals D, Hurley B, Schultz J, Hagberg J (1984) Endurance training in older men and women II. Blood lactate response to submaximal exercise. J Appl Physiol 57:1030–1033

  31. Sjödin B, Jacobs I, Karlsson J (1981) Onset of blood lactate accumulation and enzyme activities in M. vastus lateralis in man. Int J Sports Med 2:23–26

  32. Sjödin B, Jacobs I, Svedenhag J (1982) Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. Eur J Appl Physiol 49:45–57

  33. Stanley W, Wisneski J, Gertz E, Neese R, Brooks G (1988) Glucose and lactate interactions during moderate-intensity exercise in humans. Metabolism 37:850–858

  34. Stegmann H, Kindermann W (1982) Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol/l lactate. Int J Sports Med 3:105–110

  35. Stegmann H, Kindermann W, Schnabel A (1981) Lactate kinetics and individual anaerobic threshold. Int J Sports Med 2:160–165

  36. Tanaka K, Matsuura Y (1984) Marathon performance, anaerobic threshold, and onset of blood lactate accumulation. J Appl Physiol 57:640–643

  37. Williams C, Wyndham C, Kok R, Von Rahden M (1967) Effect of training on maximum oxygen intake and anaerobic metabolism in man. Int Z Angew Physiol Arbeitsphysiol 24:18–23

  38. Yoshida Y, Suda Y, Takeuchi N (1982) Endurance training based upon arterial blood lactate: effects of anaerobic threshold. Eur J Appl Physiol 49:223–230

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Keith, S.P., Jacobs, I. & McLellan, T.M. Adaptations to training at the individual anaerobic threshold. Europ. J. Appl. Physiol. 65, 316–323 (1992). https://doi.org/10.1007/BF00868134

Download citation

Key words

  • Blood lactate
  • Aerobic
  • Exercise