Advertisement

Simulation of the diffusion of silicon in gallium arsenide. 4. DPSU program and results of numerical calculations

  • O. I. Velichko
  • A. A. Egorov
  • S. K. Fedoruk
Article

Abstract

A program is developed for simulating the diffusion of silicon in gallium arsenide, and numerical calculations are performed for the process of high-concentration doping of gallium arsenide during thermal diffusion of silicon from a source with a constant concentration of the impurity near the surface of the semiconductor.

Keywords

Silicon Statistical Physic Numerical Calculation Gallium Thermal Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notation

ni

concentration of intrinsic charge carriers

Di

intrinsic coefficient of silicone diffusion in gallium arsenide

VGar

gallium vacancy in the charged state\(r_{Ga}^ - \)

VAsr+

arsenic vacancy in the charged stater As +

×

sign of the neutral charged state

\(\tilde C_{Ga}^{V_X } \) and\(\tilde C_{As}^{V_X } \)

concentrations of gallium and arsenic vacancies reduced to thermally equilibrium values in the neutral charged state

C andCA

concentrations of atoms at the nodes of the gallium and arsenic sublattices, respectively

CT

total concentration of silicon atoms

N

concentration of ionized atoms of a different impurity with the opposite type of conductivity

T

temperature

t

time of heat treatment

D(χ, T)

effective coefficient of silicon diffusion in gallium arsenide

χ

reduced concentration of electrons

CST

total concentration of impurity atoms near the semiconductor surface

LGaV andLAsV

diffusional mean free paths of gallium and arsenic vacancies, respectively

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. I. Velichko, A. A. Egorov, and S. K. Fedoruk, Inzh.-Fiz. Zh.,65, No. 5, 567–572 (1993).Google Scholar
  2. 2.
    O. I. Velichko, A. A. Egorov, and S. K. Fedoruk, Inzh.-Fiz. Zh.,66, No. 1, 83–86 (1994).Google Scholar
  3. 3.
    O. I. Velichko, A. A. Egorov, and S. K. Fedoruk, Inzh.-Fiz. Zh.,66, No. 4, 484–489 (1994).Google Scholar
  4. 4.
    D. G. Deppe, N. Holonyak, Jr., F. A. Kish, and J. E. Baker, Appl. Phys. Lett.,50, No. 15, 998–1000 (1987).Google Scholar
  5. 5.
    T. Y. Tan and U. Gosele, Mater. Sci. and Eng.,B1, No. 1, 47–65 (1988).Google Scholar
  6. 6.
    D. G. Deppe, N. Holonyak, Jr., W. E. Piano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, and J. E. Baker, J. Appl. Phys.,64, No. 4, 1838–1844 (1988).Google Scholar
  7. 7.
    R. A. Morrow, J. Appl. Phys.,64, No. 4, 1889–1896 (1988).Google Scholar
  8. 8.
    F. Hyuga, J. Appl. Phys.,64, No. 8, 3880–3884 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • O. I. Velichko
  • A. A. Egorov
  • S. K. Fedoruk

There are no affiliations available

Personalised recommendations