Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A study of unsteady wake flows past a two-dimensional square cylinder with and without planar jet injection into the vortex formation region

  • 199 Accesses

  • 12 Citations

Abstract

The present work describes the study of unsteady turbulent wake flows past two-dimensional square cylinders with and without planar jet injection into the vortex formation region. An experimental investigation provided LDV measurements of the mean and turbulent near and middle wake development at Reynolds numbers of 8520 and 14285 and for various jet to approach flow velocity ratios. In the computational work a Large Eddy Simulation employing the Smagorinsky subgrid scale model was initially performed for the higher Reynolds number plane wake configuration. Further, a hybrid phase-averaged Navier-Stokes model was formulated that encompasses aspects from both the LES formalism and the conventional eddy-viscosity procedures. Comparisons of the hybrid model calculations with the LES and measurements demonstrated the ability of the hybrid method to reproduce the range of complex unsteady flow phenomena studied here.

This is a preview of subscription content, log in to check access.

Abbreviations

C :

Courant number

C D :

drag coefficient

C S :

Smagorinsky's model coefficient

C P :

pressure coefficient

C μ :

turbulent viscosity coefficient

D :

square cylinder diameter

f :

frequency

H :

channel height

k :

turbulence kinetic energy

L,l :

turbulence length scales

u,v,w :

velocities

U 0 :

approach flow velocity

P :

static pressure

S t :

Strouhal number

t 0 :

characteristic time (D/U 0)

x i :

coordinate directions (i=1,2,3)

δ ij :

Kronecker delta (δ ij =0 forij;δ ij =1 fori=j)

ν t :

eddy-viscosity coefficient

λ :

non-dimensional diffusion coefficient

ρ :

density

τ ij :

subgrid-stress tensor

〈·〉:

phase-averaged

\(\bar \cdot\) :

time-averaged

\(\tilde \cdot\) :

grid-scale velocity (LES)

·′:

turbulent fluctuation

·″:

subgrid-scale fluctuation (LES)

·‴:

periodic fluctuation

c :

explicitly (cumulatively) calculated

i :

1, 2, 3 Cartesian coordinates

i,j,k :

tensor notation

t :

turbulent flow, total

SGS:

subgrid (e.g.k SGS)

Δ:

characteristic filter length

ɛ :

turbulence energy dissipation rate

ν :

molecular viscosity

+:

wall coordinates

n :

time level

References

  1. Bakrozis, A., Koutmos, P. and Papailiou, D., Experimental investigation of unsteady square cylinder turbulent wake flows. University of Patras. Lab. Applied Thermodynamics. Report LAT/ EXP/ JOU1. January 1994.

  2. Bearman, P.W., Vortex shedding from oscillating bluff bodies.Ann. Rev. Fluid Mech. 16 (1984) 195–222.

  3. Davis, R.W. and Moore, E.F., A numerical study of vortex shedding from rectangles.Jnl. Fluid Mech. 116 (1982) 475–506.

  4. Deardorff, J.W., A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers.Jnl. Fluid Mech. 41 (1970) 453–480.

  5. Deng, G.B., Piquet, J., Queutey, P. and Visonneau, M., Vortex-shedding flow predictions with eddy-viscosity models. In W. Rodi and F. Martelli (eds),Eng. Turb. Modelling and Experiments 2. Elsevier (1993) pp. 143–152.

  6. Durao, D.F.G., Heitor, M.V. and Pereira, J.C.F., Measurements of turbulent and periodic flows around a square cross-section cylinder.Expts. in Fluids 6 (1988) 298–304.

  7. Friedrich, R. and Nieuwstadt, F.T.M., LES of pipe flow.ERCOFTAC Bulletin No. 22 Sept. 1994.

  8. Ho, P.Y., Flow visualisation of combustor flows: A guide to the graphics routine STREAK. Imperial College University of London 3rd Year Project Report 3M-MED (1985).

  9. Igarashi, T., Fluid flow around a bluff-body used for Karman vortex flowmeter. InProc. Int. Symp. on Fluid Control and Measurements FLUCOME 86, Tokyo (1985) pp. 1017–1022.

  10. Kato, M. and Launder, B.E., The modeling of turbulent flow around stationary and vibrating square cylinders. In9th Symp. on Turbulent Shear Flows, Kyoto, Japan (1993) pp. 10–14.

  11. Kim, J. and Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations.Jnl. Comp. Physics 59 (1985) 308–323.

  12. Koutmos, P., An isothermal study of gas turbine combustor flows. Ph.D Thesis, University of London (1985).

  13. Koutmos, P. and Mavridis, C., Numerical investigation of unsteady square cylinder wake flows with and without 2D central jet injection. University of Patras. Lab. Applied Thermodynamics. Report LAT/CFD/LEST-3. 1994.

  14. Laurence, D. and Mattei, J.D., Current state of computational bluff body aerodynamics.Jnl. Wind Eng. and Ind. Aero. 49 (1993) 23–44.

  15. Leder, A. and Geropp, D.,Dynamics of Turbulent Energy Production in Separated Flows. 1st Symp. on Eng. Turb. Modelling and Measurements Sep., Dubrovnik, Yugoslavia (1990) pp. 24–29.

  16. Lee, B.E., The effect of turbulence on the surface pressure field of a square prism.Jnl. Fluid Mech. 69 (1975) 263–282.

  17. Leonard B.P., A stable and accurate convective modeling procedure based on quadratic upstream interpolation.Comp. Meth. in Applied Mech. and Engineering 19 (1979) 59–98.

  18. Lyn, D.A., Ensemble-averaged measurements in the turbulent near wake of a square cylinder: A guide to the data, Private communication, 1992.

  19. Murakami, S., Rodi, W., Mochida, A. and Sakamoto, S., LES of turbulent vortex shedding flow past 2D square cylinder. ASME Fluids Eng. Conference, Washington (1993).

  20. Murakami, S. Mochida, A. Hayashi, V. and Sakamoto, S., Numerical study on velocity pressure fields and wind forces for bluff bodies withk-ε, ASM and LES.Jnl. Wind Eng. and Ind. Aero. 41 (1992) 2841–2852.

  21. Neto, A.S., Grand, D., Metais, O. and Lesieur, M., A numerical investigation of the coherent vortices in turbulence behind a backward-facing step.Jnl. Fluid Mech. 256 (1993) 1–25.

  22. Oertel, H., Wakes behind bluff bodies.Ann. Rev. Fluid Mech. 22 (1990) 539–564.

  23. Otsuki, Y., Fuji, K., Washizu, K. and Ohaya, A., Wind-tunnel experiment on aerodynamics forces and pressure distributions of rectangular cylinders in a uniform flow. inProc. 5th Symp. on Wind Effects on Structure, Tokyo (1978) pp. 169–175.

  24. Pereira, J.C.F. and Sousa, J.M.M., Finite-volume calculations of self-sustained oscillations in a grooved channel.Jnl. Comp. Physics 106 (1993) 19–29.

  25. Perot, J.B., An analysis of the fractional step method.Jnl. Comp. Physics 108 (1993) 51–58.

  26. Peyret, R. and Taylor, D.,Computational Methods for Fluid Flow. Berlin: Springer-Verlag (1985).

  27. Rodi, W., On the simulation of turbulent flow past bluff-bodies.Jnl. Wind Eng. and Industrial Aerodynamics 46 & 47 (1993) 3–19.

  28. Rodi, W., Mansour, N. N. and Michelassi V., One-equation near wall turbulence modeling with the aid of Direct Simulation Data.Jnl. Fluids Eng. 115 (1993) 196–208.

  29. Roquemore, W.M., Britton, R.L. and Sandhu, S.S., Dynamic behaviour of a bluff-body diffusion flame.AIAA Jnl. 21 (1983) 1410–1417.

  30. Roshko A., Perspectives on bluff-body aerodynamics.Jnl. Wind Eng. and Ind. Aero. 49 (1993) 75–100.

  31. Sakamoto, S., Murakami, S. and Mochida, A., Numerical study on flow past 2D square cylinder by LES: Comparison between 2D and 3D computations.Jnl. Wind Eng. and Ind. Aero. 50 (1993) 61–68.

  32. Sani, R.L. and Gresho, P.M., Resume and remarks on the open boundary condition minisymposium.Int. Jnl. for Num. Methods in Fluids 18 (1994) 983–1008.

  33. Smagorinsky, J., General circulation experiments with the primitive equations: I. The basic experiment.Monthly Weather Review 91(3) (1963) 99–112.

  34. Stone, H.L., Iterative solution of implicit approximations of multidimensional partial differential equations.SIAM Jnl. Num. Anal. 3 (1968) 530–558.

  35. Schumann, U., SGS model for finite-difference simulations of turbulent flows in plane channels and annul).Jnl. Comp. Physics 18 (1975) 376–404.

  36. Takeda, K. and Kato, M., Wind tunnel blockage effects on drag coefficient and wind induced vibration.Jnl. Wind Eng. and Ind. Aero. 41 (1992) 897–908.

  37. Tamura, T., Ichiro, T. and Kuwahara, K., On the reliability of two dimensional simulations for unsteady flows around a cylinder-type structure.Jnl. Wind. Eng. and Ind. Aero. 32 (1990) 275–298.

  38. Yang, K.S. and Ferziger J.H., Large-eddy simulation of turbulent obstacle flow using a dynamic subgrid scale model.AIAA Jnl. 31 (1993) 1406–1413.

  39. Weston, G.S. and Apelt C.J., The effects of tunnel blockage and aspect ratio on the mean flow past a circular cylinder with Reynolds numbers between 1000 and 10000.Jnl. Fluid Mech. 114 (1982) 261–277.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koutmos, P., Mavridis, C. & Papailiou, D. A study of unsteady wake flows past a two-dimensional square cylinder with and without planar jet injection into the vortex formation region. Appl. Sci. Res. 55, 187–210 (1995). https://doi.org/10.1007/BF00867511

Download citation

Key words

  • bluff-body wake flow
  • LES of vortex shedding flow
  • hybrid eddy-viscosity models