Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Satellite remote sensing of the optical depth and mean crystal size of thin cirrus and contrails

  • 86 Accesses

  • 30 Citations


Crystal size and optical depth of optically thin cirrus clouds and contrails over the North Sea and Adriatic Sea on the 18th of October 1989 are retrieved by comparison of NOAA AVHRR/2 brightness temperatures of channel 4 (9.97 µm–11.56 µm) and channel 5 (11.075 µm–12.76 µm) with one dimensional radiative transfer calculations. Measured brightness temperatures in all three infrared channels and their differences show higher values for contrails than for cirrus. The radiative properties of young contrails are consistent only, if smaller crystal size than those given for natural cirrus are adopted for the calculations. However, there is a continuous transition in radiative parameters between clouds classified as natural cirrus or contrails. For the test areas ice clouds are classified with respect to optical depth and mean crystal size. Finally infrared fluxes and heating rates in the spectral range 4 µm–40 µm are calculated for an atmosphere with a 500 m thick contrail or cirrus uncinus. At given ice content a far stronger atmospheric warming is found for a contrail with relatively small ice crystals: up to 80 K/day at cloud base for an ice content of 0.05 gm−3 compared to 10 K/day for a cirrus uncinus with large crystals.

This is a preview of subscription content, log in to check access.


  1. Albers, F., Quante, M., Raschke, E., 1990: Aircraft Measurements in High-Altitude Contrails During ICE 1989. 7th Conference on Atmospheric Radiation, July 23–27, 1990, San Francisco.

  2. Appleman, H., 1953: The formation of exhaust condensation trails by jet aircraft.Bull. Amer. Meteor. Soc. 34(1), 14–20.

  3. Brown, S. R., 1989: Appendix-B NOAA-H/11. Ammendments to NOAA Technical Memorandum 107. NESDIS, Washington D.C.

  4. Deirmendjian, 1969:Electromagnetic Scattering on Spherical Polydispersions. New York: Elsevier.

  5. Dowling, H. D., Williams, D., 1975: Optical constants of water in the infrared.J. Geophys. Res. 80, 1656–1661.

  6. Fleming, J., Cox, S., 1974: Radiative effects of cirrus clouds.J. Atmos. Sci. 31, 2182–2188.

  7. Graßl, H., 1978: Strahlung in getrübten Atmosphären. Hamburger Geophysikalische Einzelschriften, Reihe A, Heft37, 136 pp.

  8. Harshvardhan Weinman, J., 1982: Infrared radiative transfer through a regular array of cuboidal clouds.J. Atmos. Sci. 39, 431–439.

  9. Heymsfield, A., 1975: Cirrus uncinus generating cells and the evolution of cirriform clouds. Part I. Observations of the growth of the ice phase.J. Atmos. Sci. 32, 799–808.

  10. Inoue, T., 1985: On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bispectral measurements in the 10 µm window region.J. Meteor. Soc. Japan 63, 88–99.

  11. Jacobs, H., 1986: Cloud Identification over Antarctica with Satellite Images, Thesis, Univ. Köln.

  12. Kinne, S., 1981: Einfluß von Eiswolken auf den Strahlungshaushalt der Atmosphäre, Thesis, Univ. Hamburg.

  13. Kinne, S., 1988: Effects of cirrus composition on atmospheric radiation effects.Annalen der Meteorologie 25, 15–20.

  14. Knollenberg, R., 1972: Measurements of the growth of the ice budget in a persisting contrail.J. Atmos. Sci. 29, 1367–1374.

  15. Kriebel, K.T., Saunders, R., Gesell, G., 1989: Optical properties of clouds derived from fully cloudy AVHRR Pixels.Contrib. Atmos. Phys. 62, 165–171.

  16. Lee, F., 1989: Jet contrail identification using the AVHRR infrared split window.J. Appl. Meteor. 28, 993–995.

  17. Liou, K., 1974: On the radiative properties of cirrus in the window region and their influence on remote sensing of the atmosphere.J. Atmos. Sci. 31, 522–532.

  18. Liou, K., 1977: Remote sensing of the thickness and composition of cirrus clouds from satellites.J. Appl. Meteor. 16, 91–99.

  19. Liou, K., Gebhart, K., 1982: Numerical experiments on the thermal equilibrium temperature in cirrus cloudy atmospheres.J. Meteor. Soc. Japan 60, 570–582.

  20. Liou, K., 1986: Influence of cirrus clouds on weather and climate processes: a global perspective.Mon. Wea. Rev. 114, 1167–1198.

  21. Luther, F., Fouquart, Y., 1984: The intercomparison of radiation codes in climate models (ICRCCM): longwave clear-sky calculations. Report of a Meeting in Frascati, Italy, 15–18 August 1984; WCP-93, WMO.

  22. Manschke, A., 1985: Einfluß dünner Cirren auf den langwelligen Strahlungshaushalt der Atmosphäre. Thesis, Univ. Kiel.

  23. Mc Cartney, E., 1976:Optics of the Atmosphere. New York: (Series in Pure and Applied Optics).

  24. Meerkötter, R., 1983: Nettoflußlangwelliger Strahlung am Boden aus spektralen Strahldichten am Außenrand der Atmosphäre. Thesis, Univ. Kiel.

  25. Olesen, F.-S., 1984: Cloud Remote Sensing over the Ocean at Night with the NOAA-7-AVHRR. Univ. Kiel, Germany.

  26. Olesen, F.-S., Graßl, H., 1985: Cloud detection and classification over oceans at night with NOAA-7.Int. Remote Sensing 6, 1435–1444.

  27. Plass, G., Kattawar, W., Catchings, F., 1973: Matrix operator theory of radiative transfer. 1: Rayleigh scattering.Appl. Opt. 12, 314–329.

  28. Pilié, R., Jiusto, J., 1958: A laboratory study of contrails.J. Meteor. 15, 149–154.

  29. Platt, C., Stephens, G., 1980: The interpretation of remotely sensed high cloud emittances.J. Atmos. Sci. 37, 2314–2322.

  30. Saunders, R., Kriebel, K.T., 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data.Int. J. Remote Sensing 9, 123–150.

  31. Schlüssel, P., 1986: Infraroterkundung von Oberflächentemperaturen sowie atmosphärischer Temperatur- und Wasserdampfstrukturen. Thesis, Univ. Kiel.

  32. Schumann, U., Gesell, G., Holler, H., Kriebel, K., Meerkötter, R., Mörl, P., Reinhardt, M., Renger, W., Schickel, K., Strauß, B., Wendling, P., 1990: Analysis of Air Traffic Contrails from Satellite Data — A Case Study; DGLR/AAAF/RAes, European Propulsion Forum: Future Civil Engines and the Protection of the Atmosphere. Cologne-Porz, April 3–5, 1990.

  33. Scorer, R. S., 1989: Cloud reflectance variation in channel 3.Int. J. Remote Sensing 10, 675–686.

  34. Stephens, G., Webster, P., 1981: Clouds and climate: sensitivity of simple systems.J. Atmos. Sci. 38, 235–247.

  35. Wu, M., 1987: A method for remote sensing the emissivity, fractional cloud cover and cloud top temperature of high-level, thin clouds.J. Climate Appl. Meteor. 26(2), 225–233.

  36. Yamanouchi, T., Suzuki, K., Kawaguchi, S., 1987: Detection of Clouds in Antartica from Infrared Multispectral Data of AVHRR.J. Meteor. Soc. Japan 65, 949–962.

  37. Yamanouchi, T., Kawaguchi, S., 1992: Cloud distribution in the antarctic from AVHRR data and radiation measurements at the surface.Int. J. Remote Sensing 13, 111–127.

Download references

Author information

Additional information

With 11 Figures

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gothe, M.B., Graßl, H. Satellite remote sensing of the optical depth and mean crystal size of thin cirrus and contrails. Theor Appl Climatol 48, 101–113 (1993).

Download citation


  • Crystal Size
  • Optical Depth
  • Brightness Temperature
  • Radiative Property
  • Cloud Base