Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Solution of a problem concerning the motion of viscoelastic materials

Abstract

We give a general solution of a problem involving plane-parallel shearing motion of a Maxwell body in a plastometer subject to a quasistatic concentrated interaction. In our solution we employ physicomathematical modelling of the microstructure and creep processes in the distributed mass of viscoelastic materials.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    O. Yu. Sabsai, M. A. Koltunov, and G. V. Vinogradov, “An analytic description of creep in polymers in a flow state in a linear deformation region,” Mekh. Polim., No. 4 (1972).

  2. 2.

    S. Middleman, Flow of High Polymers Continuum and Molecular Rheology, Wiley (1968).

  3. 3.

    I. I. Gol'dberg, Mechanical Behavior of Polymer Materials [in Russian], Moscow (1970).

  4. 4.

    S. P. Gun'kin, Yu. V. Zelenev, and A. P. Molotkov, “On the prognosis of deformational properties of polymer materials,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1973).

  5. 5.

    Yu. V. Zelenev and A. P. Molotkov, “On a physical justification of a macroscopic model of linear polymers,” Uch. Zap. Mosk. Obl. Ped. Inst. im. N. K. Krupskoi,147, No. 8 (1964).

  6. 6.

    A. V. Tobol'skii, Structure and Properties of Polymers [in Russian], Khimiya, Moscow (1964).

  7. 7.

    A. I. Gubanov, “Elementary deformations of viscoelastic bodies,” Zh. Tekh. Fiz.,17, No. 4, (1947).

  8. 8.

    B. M. Budak, A. A. Samarskii, and A. N. Tikhonov, Compendium of Problems of Mathematical Physics [in Russian], Nauka, Moscow (1972).

  9. 9.

    A. Yu. Ishlinskii, “Longitudinal oscillations of a rod with a linear law of aftereffect and relaxation,” Prikl. Matem, i Mekh.,4, No. 1 (1940).

  10. 10.

    A. R. Rzhanitsyn, Theory of Creep [in Russian], Stroiizdat, Moscow (1968).

  11. 11.

    A. N. Tikhonov and A. A. Samarskii, Partial Differential Equations in Mathematical Physics, Vols. 1 and 2, Holden-Day, San Fransicso (1964; 1968).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 172–175, November–December, 1974.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gorbunov, P.M. Solution of a problem concerning the motion of viscoelastic materials. J Appl Mech Tech Phys 15, 881–884 (1974). https://doi.org/10.1007/BF00864614

Download citation

Keywords

  • Microstructure
  • Mathematical Modeling
  • Mechanical Engineer
  • General Solution
  • Industrial Mathematic