Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Modified Karplus equations and their stereochemical applications

  • 146 Accesses

  • 1 Citations

Abstract

The current status of research on the Karplus equation for the vicinal spin—spin coupling constants (SSCC)3 J HH, of fundamental significance in applications of NMR spectroscopy for establishing the configuration and conformational features of organic compounds in solutions, is discussed in the review. The data on the analysis of the fundamental molecular factors that affect the3 J HH SSCC were generalized: the dihedral angle between interacting protons, the electronegativities of α- and β-substituents, the H-C-C valence angles, the C-C bond length, and effects of "proximity of substituents." The stereochemical applications of different modifications of the Karplus equation proposed in recent years were examined and comparatively analyzed. Possible ways of improving the accuracy of predicting the3 J HH SSCC by using modern modifications of the Karplus equation and the method of molecular mechanics were discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. W. Emsley, J. Feeney, and L. H. Sutcliffe,High-Resolution Nuclear Magnetic Resonance Spectroscopy, Vol. 1, Pergamon, Oxford (1965), Vol. 2 (1966).

  2. 2.

    M. J. Karplus,J. Chem. Phys. 64, No. 30, 11 (1959).

  3. 3.

    M. J. Karplus,J. Phys. Chem. 64, No. 12, 1793 (1961).

  4. 4.

    H. Conroy,Advances in Organic Chemistry [Russian translation], Mir, Moscow (1964).

  5. 5.

    J. Powles,Disc. Faraday Soc. 34, 30 (1962).

  6. 6.

    M. J. Karplus,J. Chem. Phys., No. 33, 1842 (1960).

  7. 7.

    M. J. Karplus,J. Am. Chem. Soc. 85, No. 18, 2870 (1963).

  8. 8.

    A. B. Bother-By,Adv. Magn. Reson. 1, 195 (1965).

  9. 9.

    V. F. Bystrov,Usp. Khim. 41, No. 3, 512 (1972).

  10. 10.

    Yu. Yu. Samitov,Khim. Geterotsikl. Soedin., No. 12, 1587 (1978).

  11. 11.

    Yu. Yu. Samitov,Stereospecificity of Nuclear Spin—Spin Coupling Constants and Conformational Analysis [in Russian], Izd. Kazan. Univ. (1990).

  12. 12.

    K. G. R. Pachler and P. L. Wessels,J. Mol. Struct. 3, 207 (1969).

  13. 13.

    C. A. G. Haasnoot, A. A. M. de Leeuw, and C. Altona,Tetrahedron 36, No. 19, 2783 (1980).

  14. 14.

    W. J. Colucci, S. J. Jungk, and R. D. Gandour,Magn. Reson. Chem. 23, No. 5, 335 (1985).

  15. 15.

    K. Imai and E. Osawa,Mag. Reson. Chem. 28, 668 (1990).

  16. 16.

    C. H. Banwell, A. D. Cohen, N. Sheppard, and J. J. Turner,Proc. Chem. Soc., No. 3, 266 (1959).

  17. 17.

    H. S. Gutowsky, V. D. Mochel, and B. G. Sommer,J. Chem. Phys. 36, No. 5, 1153 (1962).

  18. 18.

    H. Booth,Progress in NMR Spectroscopy, Vol. 5, Pergamon, Oxford (1969), p. 149.

  19. 19.

    N. S. Bhacca and D. H. Williams,J. Am. Chem. Soc. 86, No. 13, 2742 (1964).

  20. 20.

    C. Altona and M. Sundaralingam,J. Am. Chem. Soc. 95, No. 7, 2333 (1973).

  21. 21.

    D. B. Davies and S. S. Danyluk,Biochemistry, No. 13, 4417 (1974).

  22. 22.

    K. D. Kopple, G. R. Wiley and R. Tauke,Biopolymers, No. 12, 627 (1973).

  23. 23.

    E. W. Garbish and M. G. Griffiths,J. Am. Chem. Soc. 90, No. 23, 6543 (1968).

  24. 24.

    H. R. Buys and H. J. Geise,Tetrahedron Lett., No. 46, 3991 (1970).

  25. 25.

    R. J. Abraham and K. G. R. Pachler,Mol. Phys., No. 7, 165 (1964).

  26. 26.

    P. L. Durette and D. Horton,Org. Magn. Reson. 3, 417 (1971).

  27. 27.

    K. Jankowski and A. Rabczenco,Org. Magn. Reson. 9, 480 (1977).

  28. 28.

    K. Jankowski,Org. Magn. Reson. 10, 50 (1977).

  29. 29.

    K. Jankowski, F. Soler, and M. Ellenberger,J. Mol. Strukt. 48, 63 (1978).

  30. 30.

    K. G. R. Pachler,J. Chem. Soc. Perkin Trans. 1, No. 10, 1936 (1972).

  31. 31.

    L. G. Vorontsova, A. F. Bochkov, K. Jankowski, and A. Rabczenco,Org. Magn. Reson. 9, 480 (1977).

  32. 32.

    M. Barfield and B. Chakrabarti,Chem. Rev. 69, No. 6, 757 (1969).

  33. 33.

    M. J. Karplus,J. Chem. Phys. 6, No. 33, 1842 (1960).

  34. 34.

    M. J. S. Dewar and R. C. Fahey,J. Am. Chem. Soc. 85, No. 18, 2704 (1963).

  35. 35.

    M. Barfield,J. Chem. Phys. 48, No. 10, 4463 (1968).

  36. 36.

    V. F. Bystrov, S. L. Portnova, V. I. Tsetlin, V. T. Ivanov, and Yu. A. Ovchinnikov,Tetrahedron 25, 493 (1969).

  37. 37.

    V. F. Bystrov, S. L. Portnova, V. I. Tsetlin, V. T. Ivanov, and Yu. A. Ovchinnikov,Current Problems in the Chemistry of Peptides and Proteins [in Russian], Nauka, Moscow (1969).

  38. 38.

    V. F. Bystrov, S. L. Portnova, T. A. Balashova, V. I. Tsetlin, V. T. Ivanov, P. V. Kostetzky, and Yu. A. Ovchinnikov,Tetrahedron Lett., No. 60, 5283 (1969).

  39. 39.

    J. B. Lambert,J. Am. Chem. Soc. 89, No. 8, 1836 (1967).

  40. 40.

    H. R. Buijs,Rec. Trav. Chim. Pays-Bas 88, 1003 (1969).

  41. 41.

    K. N. Slessor and A. S. Tracey,Can. J. Chem. 49, 2874 (1971).

  42. 42.

    M. Witanowsky and J. D. Roberts,J. Am. Chem. Soc. 88, No. 4, 737 (1966).

  43. 43.

    R. J. Abraham and G. Getty,J. Chem. Soc. (B), No. 6, 961 (1969); L. Phillip and V. Wray,J. Chem. Soc. Perkin Trans. 2, 536 (1972).

  44. 44.

    K. G. R. Pachler,Tetrahedron Lett., No. 22, 1955 (1970).

  45. 45.

    K. G. R. Pachler,Tetrahedron, No. 27, 1871 (1971).

  46. 46.

    G. E. Maciel, J. W. McIver, N. S. Ostlund, and J. A. Pople,J. Am. Chem. Soc., No. 92, 4497 (1970).

  47. 47.

    J. A. Pople and D. P. Santry,Mol. Phys., No. 8, 1 (1964).

  48. 48.

    M. L. Huggins,J. Am. Chem. Soc. 75, No. 17, 4123 (1953).

  49. 49.

    K. G. R. Pachler,J. Chem. Soc. Perkin Trans. 2, No. 10, 1936 (1972).

  50. 50.

    G. V. Grishina, S. A. Abdulganeeva, V. M. Potapov, I. A. Ivanova, A. A. Espenbetov, Yu. T. Struchkov, I. A. Grishina, and A. I. Lutsenko,Khim. Geterotsikl. Soedin., No. 12, 1656 (1985).

  51. 51.

    A. É. Aliev, A. A. Fomichev, G. V. Grishina, Yu. I. Él'natanov, and R. G. Kostyanovskii,Izv. Akad. Nauk SSSR, Ser. Khim., No. 8, 1760 (1990).

  52. 52.

    U. Burkert and N. L. Allinger (eds.), [ACS Monograph No. 177: Molecular Mechanics], American Chemical Society, Washington, DC (1982).

  53. 53.

    N. L. Allinger,Adv. Phys. Org. Chem. 45, 1 (1976).

  54. 54.

    N. L. Allinger,J. Am. Chem. Soc. 99, No. 25, 8127 (1977).

  55. 55.

    S. Profeta and N. L. Allinger,J. Am. Chem. Soc. 107, No. 1, 1907 (1985).

  56. 56.

    G. Schrumpf and A. W. Klein,Chem. Ber. 106, 266 (1973).

  57. 57.

    C. Altona and C. A. G. Haasnoot,Org. Magn. Reson. 13, 417 (1980).

  58. 58.

    F. A. A. M. de Leeuw and K. Altona,J. Comp. Chem. 4, 428 (1983).

  59. 59.

    H.-J. Schneider, U. Buchheit, N. Becker, G. Schidt, and U. Siehl,J. Am. Chem. Soc. 24, No. 107, 7027 (1985).

  60. 60.

    A. G. J. Sedee, G. M. J. B. van Henegouwen, W. Gruijt, and C. A. G. Haasnoot,J. Org. Chem. 50, 4182 (1985).

  61. 61.

    E. Osawa,J. Chem. Soc., Chem. Commun., No. 3, 261 (1986).

  62. 62.

    W. J. Colucci, R. D. Gandour, and E. A. Mooberry,J. Am. Chem. Soc. 108, No. 23, 7141 (1986).

  63. 63.

    F. Ronchetti and L. Toma,Tetrahedron 42, 6535 (1986).

  64. 64.

    H. A. Bates and S. B. Rosenblum,Tetrahedron 41, 2331 (1985).

  65. 65.

    J. J. M. Sleeck and M. J. O. Anteunis,Bull. Soc. Chim. Belg. 94, 187 (1985).

  66. 66.

    H. Kawaki, H. Beierbeck, and G. Kotovych,J. Biomol. Struct. Dynamics 3, 161 (1985).

  67. 67.

    L. J. Dosen-Micovic and D. Jeremic,J. Mol. Struct. 131, 261 (1985).

  68. 68.

    J. J. M. Lamberts, C. A. G. Haasnoot, and W. H. Laarhoven,J. Org. Chem. 49, 2490 (1984).

  69. 69.

    C. A. G. Haasnoot, F. A. A. M. de Leeuw, H. P. M. de Leeuw, and C. Altona,Org. Magn. Reson. 15, 43 (1981).

  70. 70.

    E. Brunet, J. L. Garcia-Ruano, J. H. Rodriguez, and F. Alcudia,Tetrahedron 40, 4433 (1984).

  71. 71.

    C. Jaime, R. M. Ortuno, and J. J. Font,J. Org. Chem. 52, 3946 (1987).

  72. 72.

    G. I. Birnbaum, M. Budesinsky, and J. Beranek,Can. J. Chem. 65, 271 (1987).

  73. 73.

    S. Masumune, P. Ma, R. E. Moore, T. Fijiyshi, C. Jaime, and E. J. Osawa,J. Chem. Soc. Chem. Commun., No. 3, 261 (1986).

  74. 74.

    H. J. Geise, C. Altona, and C. Romers,Tetrahedron Lett., No. 9, 1383 (1967).

  75. 75.

    C. Altona, H. L. Geise, and C. Romers,Tetrahedron 24, 13 (1968).

  76. 76.

    C. Altona and M. Sundaralingam,J. Am. Chem. Soc. 95, No. 7, 2333 (1973).

  77. 77.

    S. Castellano and A. A. Bother-By,J. Chem. Phys. 41, No. 12, 3864 (1964).

  78. 78.

    M. F. Grenier-Loustalot, A. Lectard, A. Lichanot, and F. Metras,Org. Magn. Reson. 10, 86 (1977).

  79. 79.

    A. É. Aliev, Candidate's Dissertation, Chemical Sciences, P. Lumumba University of National Friendship (1988).

  80. 80.

    D. C. Rohrer, W. L. Duax, R. Peters, and M. Tanabe,Acta Crystallogr. B38, 1362 (1982).

  81. 81.

    A. P. Marchand, N. W. Marchand, and A. L. Segre,Tetrahedron Lett., No. 60, 5207 (1969).

  82. 82.

    J. L. Marshall, S. R. Walter, M. Barfield, A. P. Marchand, N. W. Marchand, and A. L. Segre,Tetrahedron 32, 537 (1976).

  83. 83.

    M. L. Huggins,J. Am. Chem. Soc. 75, No. 17, 4123 (1953).

  84. 84.

    M. Barfield, I. Burfitt, and D. Doddrell,J. Am. Chem. Soc. 97, No. 9, 2631 (1975).

  85. 85.

    S. Weiss and G. E. Lerio,J. Chem. Phys. 48, 962 (1968).

  86. 86.

    R. M. Pitzer,Acc. Chem. Res. 16, 207 (1983).

  87. 87.

    R. E. Blick and A. A. Bother-By,J. Chem. Phys. 25, 362 (1956).

  88. 88.

    R. M. Lynden-Bell and N. Sheppard,Proc. R. Soc. London, Ser. A 269, 385 (1962).

  89. 89.

    J. N. Murrel and V. M. S. Gil,Teor. Chim. Acta 4, 114 (1966).

  90. 90.

    J. A. Pople, J. W. McIver, and N. S. Ostlund,Chem. Phys. Lett. 1, 465 (1967).

  91. 91.

    Y. Terui,J. Chem. Soc. Perkin Trans. 2, 118 (1975).

  92. 92.

    C. Jaime, E. Osawa, Y. Takeuchi, and P. Camps,J. Org. Chem. 48, 4514 (1983).

  93. 93.

    C. Jaime and E. Osawa,J. Chem. Soc. Commun., No. 3, 261 (1986).

  94. 94.

    C. Jaime, R. M. Ortuno, and J. Font,J. Org. Chem. 51, 3946 (1986).

  95. 95.

    R. J. Abraham and J. Fisher,Magn. Reson. Chem. 23, 856 (1985).

  96. 96.

    K. Imai and E. Osawa,Tetrahedron Lett. 30, No. 32, 4251 (1989).

  97. 97.

    J. Mulley,Struct. Bonding (Berlin) 66, 1 (1987).

  98. 98.

    J. Mulley,J. Am. Chem. Soc. 107, No. 25, 7271 (1985).

  99. 99.

    R. Laatikanen,Magn. Reson. Chem. 24, 588 (1986).

  100. 100.

    N. L. Allinger (converted by A. B. Buda),QCPE Bull. 7, 141 (1987).

  101. 101.

    Y.-M. Xun, T. Ouchi, C. Jaime, E. Osawa, A. Okamoto, and T. Higuchi,JCPE Newslett., No. 1, 24 (1989).

  102. 102.

    L. Dosen-Micovic, D. Jeremic, and N. L. Allinger,J. Am. Chem. Soc. 105, No. 7, 1723 (1983).

  103. 103.

    J. A. Nelder and R. Mead,Comput. J., No. 7, 308 (1965).

  104. 104.

    N. L. Allinger, Y. H. Yuh, and J. H. Lii,J. Am. Chem. Soc. 111, No. 23, 8551 (1989).

Download references

Additional information

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 7, pp. 1483–1506, July, 1992.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aliev, A.É., Sinitsyna, A.A. Modified Karplus equations and their stereochemical applications. Russ Chem Bull 41, 1143–1160 (1992). https://doi.org/10.1007/BF00864172

Download citation

Keywords

  • modified Karplus equations
  • molecular mechanics
  • group electronegativity of substituents
  • conformational analysis