Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Separation of non-newtonian liquids by thermal diffusion

  • 16 Accesses


A transport equation has been derived for a mixture of non-Newtonian liquids showing power-law flow; the optimum separation conditions in a thermal-diffusion column in the presence of parasitic convection have been defined.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    S. R. Sergienko, D. I. Érnepesov, et al., Dokl. Akad. Nauk SSSR,190, No. 5 (1970).

  2. 2.

    R. Grasselli, G. R. Brown, and C. E. Plymale, Chem. Eng. Prog.,57, No. 5 (1961).

  3. 3.

    M. M. Kusakov, A. Yu. Koshevnik, et al., Dokl. Akad. Nauk SSSR,158, No. 5 (1964).

  4. 4.

    C. Jones and W. Furry, Isotope Separation by Thermal Diffusion [Russian translation], IL, Moscow (1947).

  5. 5.

    Z. P. Shul'man, Convective Heat and Mass Transport in Rheologically Complex Liquids [in Russian], Énergiya, Moscow (1975).

  6. 6.

    G. D. Rabinovich, R. Ya. Gurevich, and G. I. Bobrova, Separation of Liquid Mixtures by Thermal Diffusion [in Russian], Nauka i Tekhnika, Minsk (1971).

  7. 7.

    I. G. Semakin, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 (1972).

  8. 8.

    G. D. Rabinovich and R. Ya. Gurevich, Inzh.-Fiz. Zh.,22, No. 5 (1972).

Download references

Author information

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 36, No. 5, pp. 835–840, May, 1979.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tubin, A.A., Sorokin, Y.S. Separation of non-newtonian liquids by thermal diffusion. Journal of Engineering Physics 36, 555–558 (1979). https://doi.org/10.1007/BF00864128

Download citation


  • Convection
  • Statistical Physic
  • Thermal Diffusion
  • Transport Equation
  • Separation Condition