Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A model for predicting actual evapotranspiration under soil water stress in a Mediterranean region

Summary

In this paper a model for estimating actual evapotranspiration is developed and tested for field crops (grain sorghum and sunflower) maintained under water stress conditions. The model is based on the Penman-Monteith formulation of ET in which canopy resistance (r c) is modeled with respect to the crop water status and local climatological conditions. The model was previously tested on reference grass; in this last case no reference was made to soil water conditions andr c was modeled only as a function of climatological parameters. Herer c is expressed as a function of available energy, vapour pressure deficit, aerodynamic resistance and crop water status by means of predawn leaf water potential. Results, obtained with various crop water stress intensities, show that, on a daily scale, calculated ET is 98% and 95% of the measured ET for sorghum and sunflower respectively. The correlation between daily calculated and measured ET is very high (r 2 = 0.95 for sorghum andr 2 = 0.98 for sunflower). On an hourly scale, the model works very well when the crops were not stressed and during the senescence stage. In case of weak and strong stress the model has to be used with some precautions.

This is a preview of subscription content, log in to check access.

References

  1. Allen, R. G., Jensen, M. E., Wright, J. L., Burman, R. D., 1989: Operational estimates of reference evapotranspiration.Agron. J. 81, 650–662.

  2. Carlson, R. E., Momen, A. E., Arjmand, O., Shaw, R. H., 1979: Leaf conductance and leaf water potential relationships for two soybean cultivars grown under controlled irrigation.Agron. J. 71, 321–325.

  3. Catsky, J., Chartier, P. H., Djavanchir, A., 1973: Evolution diurne de la résistance stomatique et du déficit de saturation des feuilles. Conséquences sur la fixation de CO2.Ann. Agron. 3, 287–305.

  4. Davies, W. J., 1977: Stomatal response to water stress and light in plants grown in controlled environments and in the field.Crop Sci. 17, 735–740.

  5. Davies, W. J., Metcafle, J., Lodge, T. A., da Costa, A. R., 1986: Plant growth substances and the regulation of growth under drought.Aust. J. Plant Physiol. 13, 105–125.

  6. Daudet, F. A., Perrier, A., 1968: Etude de l'évaporation ou de la condensation à la surface d'un corps à partir du bilan énergètique.Rev. gén. Therm. 76, 353–364.

  7. Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation.J. Geophys. Res. 83, 1889–1903.

  8. Djavanchir, A., 1971: Mise au point d'une chambre de transpiration et son application à l'étude de la régulation stomatique. Thése Doct. Ing. Univ. Paris-Sud (Orsay), 137 pp.

  9. Fritschen, L. J., Simpson, J. R., 1989: Surface energy and radiation balance systems: general description and improvements.J. Appl. Meteor. 28, 680–689.

  10. Gollan, T., Turner, N. C., Schulze, E. D., 1985: The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. III. In the sclerophyllous woody species Nerium oleander.Oecologia (Berlin) 65, 356–362.

  11. Gosse, G., 1976: Evapotranspiration et caractéristiques d'un gazon en climat équatorial humide.Ann. Agron. 27, 141–163.

  12. Itier, B., Flura, D., Belabbes, K., Kosuth, P., Rana, G., Figueiredo, L., 1992: Relations between relative evapotranspiration and predawn leaf water potential in soybean grown in several locations.Irr. Sci. 13, 109–114.

  13. Jensen, M. E., Burman, R. D., Allen, R. G., 1990:Evapotranspiration and Irrigation Water Requirements. New York: ASCE, American Society of Civil Engineers, 332 pp.

  14. Kanemasu, E. T., Tanner, C. B., 1969a: Stomatal resistance of snap beans. II-Effect of leaf water potential.Plant Physiol. 44, 1547–1552.

  15. Kanemasu, E. T., Tanner, C. B., 1969b: Stomatal resistance of snap beans. II-Effect of light.Plant Physiol. 44, 1553–1556.

  16. Katerji, N., Hallaire, M., 1984: Les grandeurs de référence utilisables dans l'étude de l'alimentation en eau des cultures.Agronomie 4(10), 999–1008.

  17. Katerji, N., Perrier, A., 1983: Modélisation de l'évapotranspiration réelle ETR d'une parcelle de luzerne: role d'un coeficient culturale.Rev. d'Agronomie 3(6), 513–521.

  18. Katerji, N., Ferreira, I., Mastrorilli, N., Losavio, N., 1990: A simple equation to calculate crop evapotranspiration: results of several years of experimentation.Acta Hortic. 278, 477–489.

  19. Kreith, F., 1973:Principle of heat Transfer. New York: Dun Donnelley Publishing, 651 pp.

  20. Lindroth, A., Haldin, S., 1986: Numerical analysis of pine forest evaporation and surface resistance.Agric. Forest Meteor. 38, 59–79.

  21. Lohammer, T., Larsson, S., Linder, S., Falk, O., 1980: FAST — simulation models of gaseous exchange in Scots Pine.Ecol. Bull. (Stockolm) 32, 505–523.

  22. Mastrorilli, M., Katerji, N., Rana, G., 1995: Water Efficiency and stress on grain sorghum at different reproductive stages.Agric. Water Manag. 28, 23–34.

  23. Munro, D. S., Oke, T. R., 1975: Aerodynamic boundary layer adjustment over a crop in neutral stability.Bound. Layer Meteor. 9, 53–61.

  24. Perrier, A., 1975a: Etude de l'évapotranspiration dans les conditions naturelles. I — Evaporation et bilan d'energie des surfaces naturelles.Ann. Agron. 26, 1–18.

  25. Perrier, A., 1975b: Etude de l'évapotranspiration dans les conditions naturelles. III — Evapotranspiration réelle et potentielle des couverts végétaux.Ann. Agron. 26, 229–243.

  26. Perrier, A., Katerji, N., Gosse, G., Itier, B., 1980: Etude “in situ” de l'évapotranspiration réelle d'une culture de blé.Agric. Meteor. 21, 295–311.

  27. Rana, G., Katerji, N., Mastrorilli, M., El Moujabber, M., 1994: Evapotranspiration and canopy resistance of grass in a Mediterranean region.Theor. Appl. Climatol. 51(1–2), 61–71.

  28. Scholander, P. F., Hammel, H. T., Bradsteet, E. D., Hemmingsen, E. A., 1965: Sap pressure in vascular plants.Science 148, 339–346.

  29. Schulze, E. D., 1986: Carbon dioxide and water vapour exchange in response to drought in the atmosphere and in the soil.Ann. Rev. Plant Physiol. 37, 247–270.

  30. Stewart, J. B., 1988: Modelling surface conductance of pine forest.Agric. Meteorol. 43, 19–35.

  31. Szeicz, G., Van Bavel, C. H., Takami, S., 1973: Stomatal factor in water use and dry matter production by sorghum.Agric. Meteorol. 12, 361–389.

  32. Tardieu, F., Katerji, N., Bethenod, O., 1990: Relation entre l'etat hydrique du sol, le potential de base et d'autres indicateurs de la contrainte hydrique chez le mais.Agronomie 8, 617–626.

  33. Turner, N. C., 1974: Stomatal response to light and water under field conditions. In: Bieleski, R. L., Ferguson, A. R., Cresswell, M. M., (eds.)Mechanism of Regulation of Plant Growth. Bull. R. Soc. N. Z.,12, 423–432.

Download references

Author information

Additional information

With 9 Figures

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rana, G., Katerji, N., Mastrorilli, M. et al. A model for predicting actual evapotranspiration under soil water stress in a Mediterranean region. Theor Appl Climatol 56, 45–55 (1997). https://doi.org/10.1007/BF00863782

Download citation

Keywords

  • Water Stress
  • Sorghum
  • Vapour Pressure Deficit
  • Leaf Water Potential
  • Actual Evapotranspiration