Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Estimation of the error in the solution of the viscoelastic problem using the method of approximation

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    A. A. Il'yushin, “The method of approximations for calculations on constructions using the linear theory the thermoviscoelasticity”, Mekh. Polim., No. 2, 210–221 (1968).

  2. 2.

    B. E. Pobedrya, “On the solution of problems in the linear theory of the viscoelasticity of the contact type”, Dokl. Akad. Nauk SSSR,190, No. 2, 297–300 (1970).

  3. 3.

    A. A. Il'yushin, “An experimental method for the solution of one type of integral equation of the theory of viscoelasticity”, Mekh. Polim., No. 4, 584–587 (1969).

  4. 4.

    A. A. Il'yushin and B. E. Pobedrya, The Basis of the Mathematical Theory of Thermoviscoelasticity [in Russian], Moscow (1970).

  5. 5.

    Functional Analysis [in Russian], SMB, Moscow (1972).

  6. 6.

    F. Riss and B. Sekefal'vi-Nad', Lectures on Functional Analysis [in Russian], Moscow (1954).

  7. 7.

    I. M. Glazman and Yu. I. Lyubich, Finite Dimensional Linear Analysis [in Russian], Moscow (1969).

  8. 8.

    N. Dunford and J. T. Schwartz, Linear Operators, Interscience Publishers, New York (1958–1971).

  9. 9.

    B. E. Podedrya, “Numerical calculations on viscoelastic systems”, Probl. Prochn., No. 4, 58–61 (1973).

  10. 10.

    A. A. Gonchar, “The rate of approximation with rational fractions and the properties of functions”, in: Proc. Intern. Congr. Mathematics [in Russian], Moscow (1968).

  11. 11.

    B. E. Pobedrya, “On approximation with rational fractions”, Prikl. Mat. Mekh.,36, No. 6, 1136–1138 (1972).

  12. 12.

    L. E. Mal'tsev and A. I. Kreknin, “The analytical representation of Il'yushin kernels”, Mekh. Polim., No. 3, 426–433 (1977).

  13. 13.

    L. E. Mal'tsev and A. I. Kreknin, “A method for the direct solution of problems in viscoelasticity”, Mekh. Polim., No. 4, 606–613 (1977).

  14. 14.

    L. E. Mal'tsev, “Approximate operational calculus for Volterra equations in problems of polymer mechanics”, Mekh. Polim., No. 5, 804–811 (1977).

  15. 15.

    M. A. Koltunov, Creep and Relaxation [in Russian], Moscow (1976).

  16. 16.

    S. P. Timoshenko and S. Voinovskii-Kriger, Plates and Shells [in Russian], Moscow (1966).

  17. 17.

    L. A. Lyusternik, O. A. Chervonkis, and A. R. Yanpol'skii, Mathematical Analysis (the computation of elementary functions) [in Russian], Moscow (1963).

  18. 18.

    A. A. Koltunov and M. A. Koltunov, “Intermediate functions in the Il'yushin method of approximations”, Mekh. Polim., No. 3, 405–416 (1973).

  19. 19.

    B. S. Radovskii, “The behavior of a road construction as a laminant viscoelastic medium under the action of a mobile load”, (Izv. Vyssh. Uchebn. Zav.) Stroitel. Arkhitekt., No. 4, 141–146 (1975).

Download references

Additional information

M. V. Lomonosov Moscow State University. Translated from Mekhanika Polimerov, No. 5, pp. 808–817, September–October, 1978.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mal'tsev, L.E. Estimation of the error in the solution of the viscoelastic problem using the method of approximation. Polymer Mechanics 14, 649–656 (1978). https://doi.org/10.1007/BF00860777

Download citation

Keywords

  • Viscoelastic Problem