Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 34, Issue 5, pp 647–653 | Cite as

Stationary currents in oscillating flows in tubes in the case of quasistationary turbulence

  • E. I. Permyakov
Article
  • 19 Downloads

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. W. S. Rayleigh, The Theory of Sound, 2nd edn., Dover, New York (1945).Google Scholar
  2. 2.
    V. E. Nakoryakov, A. P. Burdukov, A. M. Boldarev, and P. I. Tarleev, Heat and Mass Transfer of Bodies in a Sound Field [in Russian], IT SO AN SSSR, Novosibirsk (1970).Google Scholar
  3. 3.
    R. G. Galiullin, V. B. Repin, and N. Kh. Khalitov, Viscous Fluid Flow and Heat Exchange of Bodies in an Acoustic Field [in Russian], KGU, Kazan' (1978).Google Scholar
  4. 4.
    M. Omi and M. Iguti, “Stationary flow in pipelines,” Nikhon Kikai Gakkai Rombunsyu, Ser. B,48, No. 430 (1982).Google Scholar
  5. 5.
    L. S. Kagan, D. Kh. Roizman, and V. M. Sherbaum, “Turbulent periodic fluid flow in circular tubes,” in: Hydraulics and Hydrotechnology [in Russian], No. 35 (1982).Google Scholar
  6. 6.
    H. Schlichting, Boundary Layer Theory, 6th edn., McGraw-Hill, New York (1968).Google Scholar
  7. 7.
    V. É. Gusev, “Induced oscillations in acoustic resonators,” Akust. Zh.,30, No. 2 (1984).Google Scholar
  8. 8.
    L. A. Ostrovskii, “Bursting oscillations in an acoustic resonator,” Akust. Zh.,20, No. 1 (1974).Google Scholar
  9. 9.
    R. G. Galiullin, I. P. Revva, and E. I. Permyakov, “Large amplitude gas oscillations in an open end tube,” Akust. Zh.,33, No. 3 (1987).Google Scholar
  10. 10.
    T. G. Bulatova, M. M. Grigor'ev, and V. V. Kuz'min, “Oscillatory turbulent flow in a cylindrical channel,” Inzh. Fiz. Zh.,50, No. 6 (1986).Google Scholar
  11. 11.
    R. G. Galiullin, I. P. Revva, and G. G. Khalimov, Theory of Thermal Self-Oscillations [in Russian], KGU, Kazan' (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • E. I. Permyakov
    • 1
  1. 1.Kazan'

Personalised recommendations