Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Resonance CO2 absorption (10.6 μ) behind a shock front

  • 24 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    R. Émrikh and R. I. Soloukhin, “Resonance absorption of laser radiation by methane behind a shock front,” Fiz. Goreniya Vzryva,8, No. 1, 92 (1972).

  2. 2.

    A. V. Nowak and J. L. Lyman, “The temperature-dependence absorption spectrum of the v3 band of SF6 at 10.6 μ,” J. Quant. Spectrosc. Radiat. Transfer,15, No. 10, 945 (1975).

  3. 3.

    E. T. Gerry and D. A. Leonard, “Measurement of 10.6 μ CO2 laser transition probability and optical broadening cross sections,” Appl. Phys. Lett.,8, No. 9, 227 (1966).

  4. 4.

    W. H. Christiansen, G. J. Mullaney, and A. Hertzberg, “Absorption in CO2 at 10.6 μ with rotational line overlap,” Appl. Phys. Lett.,8, No. 9, 385 (1971).

  5. 5.

    R. Ely and T. K. McCubbin, “The temperature dependence of the self-broadened half-width of the P-20 line in the 001–100 band of CO2,” J. Appl. Opt.,9, No. 5, 1230 (1970).

  6. 6.

    R. L. Leonard, “Measurements of small signal absorption at high temperature for the 001–100 band of CO2,” J. Appl. Opt.,13, No. 8, 1920 (1974).

  7. 7.

    S. A. Munje and W. H. Christiansen, “Mixed mode contributions to absorption in CO2 at 10.6 μ,” J. Appl. Opt.,12, No. 5, 993 (1973).

  8. 8.

    A. R. Strilchuk and A. A. Offenberger, “High temperature absorption in CO2 at 10.6 μ,” J. Appl. Opt.,13, No. 11, 2643 (1974).

  9. 9.

    A. C. G. Mitchell and M. W. Zemansky, Resonance Emission and Excited Atoms [Russian translation], Ob'ed. Nauch.-Tekh. Izd. (1937).

  10. 10.

    N. C. Chang and M. T. Tavis, “Gain of high pressure CO2 lasers,” IEEE J. Quant. Electron.,10, No. 3, 372 (1974).

  11. 11.

    A. D. Devir and V. P. Oppenheim, “Line width determination in the 9.4 and 10.4 μ bands of CO2 using CO2 laser,” J. Appl. Opt.,8, No. 9, 2121 (1969).

  12. 12.

    V. N. Kroshko, R. I. Soloukhin, and N. A. Fomin, “Effect of the composition and temperature of the medium on the efficiency of thermal excitation of inversion by mixing in a supersonic stream,” Fiz. Goreniya Vzryva,10, No. 4, 473 (1974).

  13. 13.

    R. I. Soloukhin and Yu. A. Yakobi, “On the problem of the measurement of gain,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 3 (1974).

  14. 14.

    R. I. Soloukhin, “Some data on the nonequilibrium state of carbon dioxide behind a shock wave front,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6, 138 (1963).

  15. 15.

    K. C. Lapworth, “Normal shock wave tables for air, argon, carbon dioxide, carbon monoxide, hydrogen, nitrogen, nitrous oxide and oxygen,” Aeronaut. Res. Council Current Papers, No. 1101 (1970).

  16. 16.

    C. K. Law and M. Bristow, “Tables of normal shock wave properties for oxygen and nitrogen in dissociation equilibrium,” in: UTIAS Techn. Note No. 148, AFOSR 70-0766, Toronto (1969).

  17. 17.

    J. L. Miller and E. V. George, “High-pressure absorption spectrum of CO2 laser bands at 10 μ,” Appl. Phys. Lett.,27, No. 12, 665 (1975).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 42–47, January–February, 1977.

The authors wish to thank Yu. A. Yakobi and Yu. Ya. Kuzyakov for helpful advice and discussions and G. A. Zavarzin for assistance in conducting the experiment.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Soloukhin, R.I., Fomin, N.A. Resonance CO2 absorption (10.6 μ) behind a shock front. J Appl Mech Tech Phys 18, 34–38 (1977). https://doi.org/10.1007/BF00858603

Download citation

Keywords

  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic
  • Shock Front