Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Cascade transfer of energy, vorticity, and a passive impurity in homogeneous isotropic turbulence (two- and three-dimensional)

  • 17 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    M. Gad-el-Hak and S. Corrsin, “Measurements of the nearly Isotropic turbulence behind a jet grid,” J. Fluid Mech.,62, No. 1 (1974).

  2. 2.

    S. I. Bekritskaya and A. A. Pavel'ev, “Exponential law of the decay grid-generated turbulence,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 (1983).

  3. 3.

    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics [in Russian], Pt. 2, Nauka, Moscow (1967).

  4. 4.

    J. Sommeria, “Two-dimensional behavior of MHD Turbulence,” J. Mec., No. 2 (1983).

  5. 5.

    Yu. B. Kolesnikov, Realization of Two-Dimensional Turbulent Flows by Means of a Magnetic Field, Author's Abstract of Physical-Mathematical Sciences Candidate Dissertation, Riga (1973).

  6. 6.

    I. A. Platniek and S. F. Selyuto, “Formation and development of the structure of turbulence in a magnetic field,” 11th Riga Conference on MHD, Vol. 1, Zinatne, Riga (1984).

  7. 7.

    V. S. Vladimirov, Generlized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1979).

  8. 8.

    G. K. Batchelor and J. Proudmen, “The large-scale structure of homogeneous turbulence,” Philos. Trans. Ser. A,248. No. 949 (1956).

  9. 9.

    M. S. Uberoi, “Energy transfer in isotropic turbulence,” Phys. Fluids,6, No. 8 (1963).

  10. 10.

    R. H. Kraichnan and D. Montgomery, “Two-dimensional turbulence,” Rep. Prog. Phys.,43, No. 5, (1980).

  11. 11.

    J. Sommeria and R. Moreau, “Why, how, and when turbulence becomes two-dimensional,” J. Fluid Mech.,118. 597 (1982).

  12. 12.

    A. A. Klyukin and Yu. B. Kolesnikov, “Experimental study of the decay of turbulence behind three-dimensional grids in a magnetic field,” 12th Riga Conference on MHD, Vol. 1, Salaspils (1987).

  13. 13.

    A. M. Obukhov, “Structure of a temperature field in a turbulent flow,” Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz.,13, No. 1 (1949).

  14. 14.

    S. Corrsin, “On the spectrum of isotropic temperature fluctuation in an isotropic turbulence,” J. Appl. Phys.,22, 469 (1951).

  15. 15.

    A. Bennani, E. Alcaraz, and J. Mathje, “Evolution, en aval d'une grille de turbulence, et spectres unidimensionels, de la variance des fluctuations de concentration d'un scalaire passif,” C. R. Acad. Sci., Ser 2,293. No. 9 (1981).

  16. 16.

    T. T. Yeh and C. W. Van Atta, “Spectral transfer of scalar and velocity field in heated grid turbulence,” J. Fluid Mech.,58, No. 2 (1973).

  17. 17.

    Z. Warhaft and J. L. Lumley, “An experimental study of the decay of temperature fluctuations in grid-generated turbulence,” J. Fluid Mech.,88, No. 4 (1978).

  18. 18.

    K. R. Sreenivasan, S. Tavoularis, et al., “Temperature fluctuations and scales in grid-generated turbulence,” J. Fluid Mech.,100, No. 3 (1980).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 109–115, September–October, 1988.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bershadskii, A.G. Cascade transfer of energy, vorticity, and a passive impurity in homogeneous isotropic turbulence (two- and three-dimensional). J Appl Mech Tech Phys 29, 701–706 (1988). https://doi.org/10.1007/BF00857918

Download citation

Keywords

  • Mathematical Modeling
  • Mechanical Engineer
  • Vorticity
  • Industrial Mathematic
  • Isotropic Turbulence