Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Zur Ontogenese des Schalenfeldes vonLymnaea stagnalis

Ontogeny of the shell field inLymnaea stagnalis

  • 50 Accesses

  • 13 Citations


  1. 1.

    The development of the adult shell field inLymnaea stagnalis can be followed from its embryonic origin through the shell gland stage. The shell gland represents the most important stage in the differentiation of the entire organ. At no time do the invaginated cells take part in the elaboration of the periostracum. This is solely the function of the rosette, i.e. of the noninvaginated cells. At this stage the shell field is already definitively differentiated into zones.

  2. 2.

    Prior to the shell gland stage, cell division and incorporation of not yet differentiated ectoderm cells are responsible for the growth of the shell field. The shell gland, and later the shell field, grows exclusively by means of mitotic cell division.

  3. 3.

    The formation of the free mantle edge begins when a portion of the elongated edge cells of the shell field arches upward. At the same time and outside of this circular ridge a second ring of undifferentiated ectoderm cells is produced. The two ridges become raised and apposed to one another, thereby creating the periostracal groove between them. They grow jointly from the body of the animal to form the free mantle.

  4. 4.

    One after the other, from the outside to the inside, the zones of the shell gland become functionally active. Accordingly the initial pellicle of the shell takes the form of a ring and consists of membrane-like lamellae. Later it becomes underlain by the other layers of the periostracum (1–3). Since the areas which give rise to the respective layers move away from the shell gland pore during subsequent growth of the shell field, these layers can be absent in the middle of the pellicle. The initial central hole in the shell sometimes becomes occluded only by the innermost shell layers.

  5. 5.

    When secretion begins, the cells are already morphologically differentiated and possess the same appearance as that of their mitotic descendents in the corresponding zones of the mature shell field.

  6. 6.

    The secretion of periostracum material proceeds via elimination of vesicles through the apical cell membrane. Only zone 2 has developed special membrane invaginations for the purpose.

  7. 7.

    In the flat-celled area of the shell field organically bound calcium appears to be transported in the form of granules through the cell interstices.

This is a preview of subscription content, log in to check access.


  1. Arni, P.: Licht- und elektronenmikroskopische Untersuchungen an Embryonen vonLymnaea stagnalis L. (Gastropoda, Pulmonata) mit besonderer Berücksichtigung der frühembryonalen Ernährung. Z. Morph. Tiere78, 299–323 (1974)

  2. Bevelander, G., Nakahara, H.: An electron microscope study of the formation of the periostracum ofMacrocallista maculata. Calc. Tiss. Res.1, 55–67 (1967)

  3. Bevelander, G., Nakahara, H.: An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs. Calc. Tiss. Res.3, 84–92 (1969)

  4. Bevelander, G., Nakahara, H.: An electron microscope study of the formation and structure of the periostracum of a gastropod,Littorina littorea. Calc. Tiss. Res.5, 1–12 (1970)

  5. Biedermann, W.: Untersuchungen über Bau und Entstehung der Molluskenschalen. Jenaische Z. Naturw.36, 1–164 (1901)

  6. Blochmann, F.: Beiträge zur Kenntnis der Entwicklung der Gastropoden. I. Zur Entwicklung vonAplysia limacina L. Z. wiss. Zool.38, 392–410 (1883)

  7. Bubel, A.: An electron-microscope study of periostracum formation in some marine bivalves. I. The origin of the periostracum. Marine Biol.20, 213–221 (1973a)

  8. Bubel, A.: An electron-microscope study of periostracum formation in some marine bivalves. II. The cells lining the periostracal groove. Marine Biol.20, 222–234 (1973b)

  9. Cather, J.N.: Cellular interactions in the development of the shell gland of the gastropod,Ilyanassa. J. exp. Zool.166, 205–224 (1967)

  10. Clement, A.C.: Development ofIlyanassa following removal of the D macromere at successive cleavage stages. J. exp. Zool.149, 193–215 (1962)

  11. Collier, J.R., McCann-Collier, M.: Shell gland formation in theIlyanassa embryo. Exp. Cell Res.34, 512–514 (1964)

  12. Fol, H.: Études sur le développement des Mollusques. II. Sur le développement embryonnaire et larvaire des Hétéropodes. Arch. Zool. exp. gén.5, 105–158 (1876)

  13. Fol, H.: Études sur le développement des Mollusques. III. Sur le développement des gastéropodes pulmonés. Arch. Zool. exp. gén.8, 103–232 (1880)

  14. Ganin, M.: Zur Lehre von den Keimblättern bei den Weichtieren. Warschauer Universitätsberichte Nr.1, 115–140 (1873) (russ.); zitiert bei Wolfson, 1880

  15. Ghose, K.C.: Morphogenesis of the shell gland, lung, mantle and mantle cavity of the giant land snail,Achatina fulica. Proc. malac. Soc. London35, 119–126 (1962)

  16. Hayashi, K.: Detection of calcium in molluscan mantles. I.Anodonta andCristaria. Anat. Zool. Jap.17, 95–103 (1938)

  17. Hayashi, K.: Detection of calcium in molluscan mantles. II.Euhadra callizona amaliae Kobelt. Annot. Zool. jap.18, 1–10 (1939)

  18. Hayashi, K.: Detection of calcium in molluscan mantles, III. Smaller freshwater bivalves in Lake Biwa, andAnodonta iwakawai andUnio margaritifera in Hokkaido. Jap. J. Malac.18, 46–49 (1954)

  19. Hess, O.: Die Entwicklung von Halbkeimen bei dem Süßwasser-ProsobranchierBithynia tentaculata. Roux' Arch.148, 336–361 (1956a)

  20. Hess, O.: Die Entwicklung von Exogastrula-Keimen bei dem Süßwasser-ProsobranchierBithynia tentaculata. Roux' Arch.148, 474–488 (1956b)

  21. Hess, O.: Die Entwicklung von Halbkeimen beiLimnaea stagnalis. Naturwiss.44, 383 (1957a)

  22. Hess, O.: Die Entwicklung von Halbkeimen bei dem Süßwasser-PulmonatenLimnaea stagnalis. Roux' Arch.150, 124–145 (1957b)

  23. Hess, O.: Entwicklungsphysiologie der Mollusken. Fortschr. Zoll.14, 130–163 (1962)

  24. Hess, O.: Fresh water gastropoda. In: G. Reverberi (Ed.), Experimental embryology of marine and fresh-water invertebrates. North-Holland Publ. Co., S. 233–247 (1971)

  25. Horst, R.: De Ontwikkelingsgeschiedenis van de Oester. Embryogénie de l'huitre (Ostrea edulis L.). Tijdschr. ned. Dierk. Ver. Suppl.1, 255–317 (1883)

  26. Ihering, H. von: Über die Ontogenie vonCyclas und die Homologie der Keimblätter bei den Mollusken. Z. wiss. Zool.26, 414–433 (1876)

  27. Kapur, S.P., Gibson, M.A.: A histological study of the development of the mantle-edge and shell in the fresh-water gastropod,Helisoma duryi eudiscus. Can. J. Zool.45, 1169–1181 (1967)

  28. Kawaguti, S., Ikemoto, N.: Electron microscopy on the mantle of a bivalved gastropod. Biol. J. Okayama Univ.8, 1–20 (1962a)

  29. Kawaguti, S., Ikemoto, N.: Electron microscopy on the mantle of a bivalve,Fabulina nitidula. Biol. J. Okayama Univ.8, 21–30 (1962b)

  30. Kawakami, I.K., Yasuzumi, G.: Electron microscope studies on the mantle of the pearl oysterPinctada martensii Dunker. Prelim. report. The fine structure of the periostracum fixed with permanganate. J. Electr. Micr.13, 119–123 (1964)

  31. Kessel, E.: Über die Schale vonViviparus viviparus undViviparus fasciatus. Z. Morph. Ök. Tiere27, 129–198 (1933)

  32. Kniprath, E.: Die Feinstruktur der Periostrakumgrube vonLymnaea stagnalis. Biomineralisation2, 23–37 (1970)

  33. Kniprath, E.: Die Feinstruktur des Drüsenpolsters vonLymnaea stagnalis. Biomineralisation3, 1–11 (1971a)

  34. Kniprath, E.: Cytochemische Lokalisation von Kalzium im Mantelepithel vonLymnaea stagnalis (Gastropoda). Histochemie25, 45–51 (1971b)

  35. Kniprath, E.: Formation and structure of the periostracum inLymnaea stagnalis. Calc. Tiss. Res.9, 260–271 (1972)

  36. Kniprath, E.: Das Wachstum des Mantels vonLymnaea stagnalis (Gastropoda). Cytobiol.10, 260–267 (1975)

  37. Kniprath, E.: Die Ontogenese des Schalenfeldes der Mollusken. Abh. Akad. Wiss. Lit. Mainz, (1977a) im Druck, review

  38. Kniprath, E.: Das Wachstum des Schalenfeldes vonMytilus (Bivalvia). MS (1977b)

  39. Kniprath, E.: Das Wachstum der Plattenfelder vonMiddendorfia (Placophora). MS (1977c)

  40. Kowalevsky, M.A.: Embryologie du Dentale. Ann. Mus. Hist. nat. (Marseille)1, No. 7, 1–54 (1883)

  41. Lillie, F.R.: The embryology of the Unionidae. J. Morph.10, 1–100 (1895)

  42. Minganti, A., Mancuso, R.: Tyrosinase activity in embryos ofPhysa fontinalis. Acta Embryol. Morph. exp.5, 199–205 (1962) (zit. nach Timmermans, 1969)

  43. Naef, A.: Die Cephalopoden. In: Fauna Flora des Golfes von Neapel,35. Monogr. Bd. 1 (1928)

  44. Nakahara, H., Bevelander, G.: The formation and growth of the prismatic layer ofPinctada radiata. Calc. Tiss. Res.7, 31–45 (1971)

  45. Neff, J.M.: Ultrastructural studies of periostracum formation, in the hard shelled clamMercenaria mercenaria (L.). Tiss. Cell4, 311–325 (1972a)

  46. Neff, J.M.: Ultrastructure of the outer epithelium of the mantle in the clamMercenaria mercenaria in relation to calcification of the shell. Tiss. Cell4, 591–600 (1972b)

  47. Numanoi, H.: Distribution of calcium in the soft part of the freshwater bivalveCristaria plicata. Jap. J. Zool.8, 353–356 (1939)

  48. Otto, H., Tönniges, C.: Untersuchungen über die Entwicklung vonPaludina vivipara. Z. wiss. Zool.80, 411–514 (1906)

  49. Raven, C.P.: Morphogenesis inLymnaea stagnalis and its disturbance by Lithium. J. exp. Zool.121, 1–72 (1952a)

  50. Raven, C.P.: Lithium as a tool in the analysis of morphogenesis inLymnaea stagnalis. Experientia8, 252–257 (1952b)

  51. Ray Lankester, E.: Summary of the zoological observations made in Naples in the winter of 1871/72. Ann. Mag. Nat. Hist., Ser. 4,11, 81–87 (1873)

  52. Ray Lankester, E.: Contributions to the developmental history of the mollusca. Phil. Trans. roy Soc. London165, 1–48 (1875)

  53. Réaumur, R.: De la formation et de l'accroissement des coquilles des animaux tant terrestres qu' aquatiques, soit de mer, soit de rivière. Hist. Acad. roy, Sci. Mem. Paris, 364–400 (1709)

  54. Salensky, W.: Beiträge zur Entwicklung der Prosobranchier. Z. wiss. Zool.22, 428–454 (1872)

  55. Saleuddin, A.S.M.: An electron microscopic study of the transformation and structure of the periostracum inAstarte (Bivalvia). Can. J. Zool.52, 1463–1471 (1974)

  56. Saleuddin, A.S.M.: An electron microscopic study on the formation of the periostracum inHelisoma (Mollusca). Calc. Tiss. Res.18, 297–310 (1975)

  57. Sarasin, P.B.: Entwicklungsgeschichte vonBithynia tentaculata. Arb. Zool. Inst. Würzburg6, 1–68 (1883)

  58. Schmidt, F.: Beiträge zur Kenntnis der Entwicklungsgeschichte der Stylommatophoren. Zool. Jahrb. (Anat.-Ont.)8, 318–341 (1895)

  59. Stempell, W.: Über die Bildungsweise und das Wachstum der Muschel- und Schneckenschalen. Biol. Zentralbl.20, 595–606, 637–644, 665–680, 698–703, 731–741 (1900)

  60. Stepanoff, P.: Über die Geschlechtsorgane und die Entwicklung vonCyclas. Arch. Naturgesch.31, 1–32 (1865)

  61. Tardy, J.: Contribution a l'étude des metamorphoses chez les nudibranches. Ann. Sci. nat. Zool. (Paris)12, 299–370 (1970)

  62. Timmermans, L.P.M.: Studies on shell formation in molluscs. Netherlands. J. Zool.19, 417–523 (1969)

  63. Wada, K.: Electron microscopic observations of the formation of the periostracum ofPinctada fucata. Bull. nation. Pearl Res. Lab.13, 1541–1560 (1968)

  64. Wolfson, W.: Die embryonale Entwicklung desLymnaeus stagnalis. Bull. Acad. Imp. Sci. St. Petersbourg26, 79–98 (1880)

  65. Ziegler, E.: Die Entwicklung vonCyclas cornea Lam. Z. Wiss. Zool.41, 525–569 (1885)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kniprath, E. Zur Ontogenese des Schalenfeldes vonLymnaea stagnalis . Wilhelm Roux' Archiv 181, 11–30 (1977). https://doi.org/10.1007/BF00857265

Download citation

Key words

  • Gastropod
  • Ontogeny
  • Shell field
  • Shell secretion