Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Harmonic electroelastic oscilations of spherical bodies

  • 31 Accesses

  • 19 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G. B. Batemen and A. Erdei, Higher Transcendental Functions [in Russian], Nauka, Moscow (1965).

  2. 2.

    I. A. Loza and N. A. Shul'ga, "Axisymmetric vibrations of a hollow piezoceramic sphere with radial polarization," Prikl. Mekh.,20, No. 2, 3–8 (1984).

  3. 3.

    I. A. Loza and N. A. Shul'ga, "Forced axisymmetric vibrations of a hollow piezoceramic sphere with an electrical method of excitation," ibid.,,26, No. 9, 16–21 (1990).

  4. 4.

    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).

  5. 5.

    N. A. Shul'ga, "Natural vibrations of a hollow transversely isotropic sphere," Prikl. Mekh.,16, No. 12, 124–127 (1980).

  6. 6.

    N. A. Shul'ga, "Electroelastic vibrations of a piezoceramic sphere with radial polarization," ibid.,,22, No. 6, 3–7 (1986).

  7. 7.

    N. A. Shul'ga and A. M. Bolkisev, Vibrations of Piezoelectric Bodies [in Russian], Nauk. Dumka, Kiev (1990).

Download references

Additional information

S. P. Timoshenko Institute of Mechanics, Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 29, No. 10, pp. 58–64, October, 1993.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shul'ga, N.A. Harmonic electroelastic oscilations of spherical bodies. Int Appl Mech 29, 812–817 (1993). https://doi.org/10.1007/BF00855260

Download citation

Keywords

  • Spherical Body