Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of temperature on the nature of the tear surface of styrene polymers

  • 28 Accesses

  • 2 Citations

Abstract

The tear surfaces of polystyrene and SKS-85 butadiene-styrene copolymer (85% styrene) have been investigated at temperatures from −45 to +100°C and from −60 to +40°C, respectively. The fracture surface of these polymers changes not only on transition from the glassy to the high-elastic state, but also within the glassy state itself, changes being observed both in the relative extent of the individual zones contributing to the fracture surface and in the nature of those zones. Changes in the nature of the fracture surface associated with a slowing of the fracture process occur at 0 and 40°C in the case of polystyrene and at −10°C in the case of copolymer SKS-85 and are attributable to secondary transitions in the polymers.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    V.G. Raevskii and M. N. Tolmacheva, Mekhan. Polim., No. 4, 100 (1965); V. G. Raevskii and L. V. Makarskaya, Mekhan. Polim., No. 5, 71 (1965)

  2. 2.

    V. E. Gul' and S. A. Vil'nits, Nauchn. Doklad. Vyssh, Shk. Khimiya i Khim. Tekhnologiya, No. 2, 365 (1958); V. E. Gul', V. V. Kovriga, and E. G. Eremina, VMS,2, 160 (1960).

  3. 3.

    V. G. Raevskii, M. N. Tolmacheva, and V. E. Gul', Dokl. Akad. Nauk SSSR,173, 883 (1967).

  4. 4.

    I. J. Leeuwerik, Rheol. Acta, No. 2, 10 (1962).

  5. 5.

    J. P. Berry, J. Polym. Sci., 61,C1, 91 (1963).

  6. 6.

    I. Wolock and S. B. Newman, in: Fracture Processes in Polymer Solids, (editor) B. Rosen, New York (1964), p. 235.

  7. 7.

    S. B. Newman, Polym. Engng Sci.,5, 159 (1965).

  8. 8.

    S. B. Newman, ASTM Spec. Techn. Puvl.,257, 132 (1959).

  9. 9.

    I. Wolock, J. Kies, and S. B. Newman, in: Fracture, B. L. Averbach D. K. Feldbeck, G. T. Hahn, and D. A. Thomas (editors), New York (1959), Ch. 13.

  10. 10.

    L. J. Broutman and F. J. McCarry, J. Appl. Polym. Sci.,9, 589 (1965).

  11. 11.

    R. G. Cheatham and A. G. H. Dietz, Mod. Plast.,29, 113 (1951).

  12. 12.

    A. Smekal, Ergebn. Exakt. Naturwiss.,15, 106 (1936).

  13. 13.

    A. Smekal, Glastechn. Ber.,23, 57 (1950).

  14. 14.

    J. P. Berry, Nature,185, 91 (1960).

  15. 15.

    J. J. Benbow, Proc. Phys. Soc.,78, 970 (1961).

  16. 16.

    L. L. Swensson, Proc. Phys. Soc.,77, 876 (1961).

  17. 17.

    J. P. Berry, SPE Trans.,1, (3), 1 (1964).

  18. 18.

    M. Higuchi, Repts Res. Inst. Appl. Mech., Kyushu Univ.,7, 118 (1959).

  19. 19.

    M. Higuchi, Repts Res. Inst. Appl. Mech., Kyushu Univ.,6, 173 (1958).

  20. 20.

    V. E. Gul', L. N. Tsarskii, and S. A. Vil'nits, Kolloidn. Zh.,20, 318 (1958).

  21. 21.

    V. E. Gul', G. P. Krutetskaya, and V. V. Kovriga, Kauchuk i Rezina, No. 12, 4 (1957); V. E. Gul' and G. P. Krutetskaya, Dokl. Akad. Nauk SSSR,114, 973 (1957).

  22. 22.

    V. E. Gul' and L. M. Chernin, VMS,2, 1613 (1960).

  23. 23.

    E. H. Yoffe, Phil. Mag.,42, 739 (1951).

  24. 24.

    J. A. Kies, A. M. Sullivan, and G. R. Irwin, J. Appl. Phys.,21, 716 (1950).

  25. 25.

    C. A. Zapffe and F. K. Laudegaft, Amer. Soc. Met.,41, 396 (1949).

  26. 26.

    L. J. Broutman and F. J. McCarry, J. Appl. Polym. Sci.,9, 609 (1965).

  27. 27.

    J. F. Rudd and E. F. Gurnee, J. Appl. Phys.,28, 1096 (1957).

  28. 28.

    K. H. Illers and E. J. Jenckel, J. Polym. Sci.,41, 528 (1959).

  29. 29.

    R. D. Andrews and T. J. Hammack, J. Polym. Sci.C1, 101 (1963).

  30. 30.

    O. N. Trapeznikova and E. I. Feofanova, ZhFKh,35, 1114 (1961).

  31. 31.

    G. Moraglio and F. Danusso, Polymer,4, 445 (1963).

  32. 32.

    U. Bianchi and C. Rossi, Polymer,4, 447 (1963).

  33. 33.

    A. M. Liquori and F. Quandrifoglio, Polymer,4, 448 (1963)

  34. 34.

    Yu. S. Lazurkin and R. L. Fogel'son, Zh. Tekhn. Fiz.,21, 267 (1951).

  35. 35.

    E. Z. Jenckel, Electrochem.,46, 186 (1940).

  36. 36.

    B. Wunderlich and D. M. Bodily, J. Appl. Phys.,35, 103 (1964).

  37. 37.

    P. Mason, J. Polym. Sci.,31, 530 (1958).

  38. 38.

    J. P. Berry, J. Polym., Sci.,A1, 993 (1963).

  39. 39.

    I. Wolock, S. B. Newman, and S. G. Weissberg, Color Phenomena in Polymethylmethacrylate Fractures. Meeting Div. High Polymer Phys. Amer. Phys. Soc., Detroit, Mich., March 1960.

  40. 40.

    J. P. Berry, J. Appl. Phys.,33, 1741 (1962).

Download references

Additional information

Moscow Technological Institute of the Meat and Dairy Industry. State Institute of Polymer Adhesives, Kirovakan. Translated from Mekhanika Polimerov, Vol. 5, No. 2, pp. 257–264, March–April, 1969.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tolmacheva, M.N., Raevskii, V.G., Pirko, T.A. et al. Effect of temperature on the nature of the tear surface of styrene polymers. Polymer Mechanics 5, 208–217 (1969). https://doi.org/10.1007/BF00854759

Download citation

Keywords

  • Polymer
  • Fracture Surface
  • Polystyrene
  • Styrene
  • Fracture Process