Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Vibrations of an orthotropic half-plane with a cavity

  • 18 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    I. I. Vorovich and V. A. Babeshko, Dynamic Mixed Problems of the Theory of Elasticity for Nonclassical Regions [in Russian], Nauka, Moscow (1979).

  2. 2.

    A. 0. Vatul'yan, I. A. Guseva, and I. M. Syunyakova, “Fundamental solutions for orthotropic media and their applications,” Izv. Sev.-Kavk. Nauch. Tsentra Vyssh. Shk. Estestv. Nauki [Bulletin of the Southern Caucasian Center of the University of Natural Science], No. 2 (1989).

  3. 3.

    V. S. Budaev, “Roots of the characteristic equation and the classification of elastic anisotropic media,” Izv. Akad. Nauk Mekh. Tverd. Tela, No. 3 (1978).

  4. 4.

    E. L. Nakhmein and B. M. Nuller, “Dynamic contact problems for an orthotropic elastic half-plane and a component plane,” Prikl. Mat. Mekh.,54, No. 4 (1990).

  5. 5.

    K. Brebbia, J. Telles, and L. Wreubel, Method of Limiting Elements [Russian translation], Mir, Moscow (1987).

  6. 6.

    A. 0. Vatul'yan and A. Ya. Katsevich, “Vibrations of an elastic orthotropic layer with a cavity,” Prikl. Mekh. Tekh. Fiz., No. 1 (1991).

Download references

Author information

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 2, pp. 123–127, March–April, 1993.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vatul'yan, A.0., Guseva, I.A. Vibrations of an orthotropic half-plane with a cavity. J Appl Mech Tech Phys 34, 263–266 (1993). https://doi.org/10.1007/BF00852522

Download citation


  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic