Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Approximate symmetry and formal linearization

  • 51 Accesses

  • 7 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    L. V. Ovsyannikov, Group Properties of Differential Equations [in Russian], Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1962).

  2. 2.

    L. V. Ovsyannikov, “Group properties of the equations of mechanics,” in: Continuum Mechanics and Related Problems [in Russian], Nauka, Moscow (1972).

  3. 3.

    V. A. Baikov, R. K. Gazizov, and N. Kh. Ibragimov, “Approximate symmetry,” Mat. Sb.,136, No. 4 (1988).

  4. 4.

    V. A. Baikov, R. K. Gazizov, and N. Kh. Ibragimov, “Approximate group analysis of the nonlinear equation utt−(f(u)ux)x + ɛϑ(u)ut=0,” Differents. Uravn., No. 7 (1988).

  5. 5.

    N. Kh. Ibragimov, Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983).

  6. 6.

    R. R. Rosales, “Exact solutions of some nonlinear evolution equations,” Stud. Appl. Math.,59, 117 (1978).

  7. 7.

    M. Flato, G. Pinczon, and J. Simon, “Nonlinear representations of Lie groups,” Ann. Scient. Ecole Norm. Sup. Paris,10, No. 4 (1977).

  8. 8.

    E. Taflin, “Analytic linearization of the Korteweg-de Vries equation,” Pacif. J. Math.,108, No. 1 (1983).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 40–49, March–April, 1989.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baikov, V.A., Gazizov, R.K. & Ibragimov, N.K. Approximate symmetry and formal linearization. J Appl Mech Tech Phys 30, 204–212 (1989). https://doi.org/10.1007/BF00852165

Download citation


  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic
  • Formal Linearization
  • Approximate Symmetry