Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Energy variant of the uniaxial theory of creep and rupture strength

  • 32 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    Strength Calculations and Tests. Theoretical Methods of Determining the Load-Carrying Capacity and Life of Machine Elements and Structures. Method of Determining the Parameters of Creep and Stress-Rupture Curves for Uniaxial Loading. Procedural Recommendations, VNIINMASh, Moscow (1982).

  2. 2.

    Yu. P. Samarin, “Generalization of the method of differentiating strain in creep theory,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3 (1971).

  3. 3.

    Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscow (1966).

  4. 4.

    L. M. Kachanov, “Time to rupture under creep conditions,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 8 (1958).

  5. 5.

    G. F. Lepin, Creep of Metals and Creep-Resistance Criteria [in Russian], Metallurgiya, Moscow (1976).

  6. 6.

    O. V. Sosnin, “Energy variant of the theory of creep and rupture strength,” Probl. Prochn., No. 5 (1973).

  7. 7.

    A. M. Lokoshchenko and S. A. Shesterikov, “Method of describing creep and rupture strength in pure tension,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1980).

  8. 8.

    V. I. Astaf'ev, “Damage and fracture criteria in creep,” Probl. Prochn., No. 3 (1983).

  9. 9.

    V. N. Kisilevskii, “Variant of kinetic creep equation,” Probl. Prochn., No. 1 (1982).

  10. 10.

    V. P. Radchenko, Yu. P. Samarin, and S. M. Khrenov, “Governing equations for materials in the presence of three stages of creep,” Dokl. Akad. Nauk SSSR,288, No 3.

  11. 11.

    Y. P. Samarin and V. P. Radchenko, “Model describing deformation and destruction of metals while stretching them under creepage,” Proc. 9th Congress on Material Testing, Budapest, Vol. 1 (1986).

  12. 12.

    Yu. P. Samarin and V. P. Radchenko, “Governing equations for describing the creep and fracture of metals during cyclic creep,” Fifth All-Union Symposium. Summary of Documents and Reports. Volgograd, Part 2 (1987).

  13. 13.

    S. A. Shesterikov (editor), Laws of Creep and Rupture Strength: Handbook, Mashinostroenie, Moscow (1983).

  14. 14.

    O. V. Sosnin, B. V. Gorev, and A. F. Nikitenko, Energy Variant of Creep Theory [in Russian], IG SO AN SSSR, Novosibirsk (1986).

  15. 15.

    V. V. Fedorov, “Thermodynamic representations on the strength and fracture of solids,” Probl. Prochn., No. 11 (1971).

  16. 16.

    V. V. Fedorov, “Thermodynamic method of estimating rupture strength,” ibid., No. 9 (1972).

  17. 17.

    D. A. Kiyalbaev and A. I. Chudnovskii, “Fracture of deformable bodies,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1970).

  18. 18.

    A. I. Chudnovskii, “Certain aspects of the fracture of deformable solids,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5 (1969).

  19. 19.

    V. I. Astaf'ev, “Entropy criterion of fracture during creep (growth of ductile cracks),” in: Strength and Reliability of Structures [in Russian], KuAI, Kuibyshev (1981).

  20. 20.

    A. M. Lokoshchenko and S. A. Shesterikov, “Problem of evaluating rupture strength during stepped loading,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1982).

  21. 21.

    A. M. Lokoshchenko and I. V. Namestnikova, “Description of rupture strength for stepped loading,” Probl. Prochn., No. 1 (1983).

  22. 22.

    A. M. Lokoshchenko and S. A. Shesterikov, “Model of rupture strength with a nonmonotonic stress dependence of strain during fracture,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1982).

  23. 23.

    M. D. Dacheva, A. M. Lokoshchenko, and S. A. Shesterikov, “Model representation of limiting deformation during creep,” ibid., No. 4 (1984).

  24. 24.

    V. I. Kovpak, “Methods of predicting the rupture strength and creep of metallic materials for long service lives,” Author's Abstract of Engineering Sciences Doctoral Dissertation, Kiev (1979).

  25. 25.

    M. Planck, Principles of the Conservation of Energy [Russian translation], GONTI, Moscow-Leningrad (1938).

  26. 26.

    V. V. Fedorov, Kinetics of the Damage and Fracture of Solids [in Russian], Fan, Tashkent (1985).

  27. 27.

    N. N. Malinin, Applied Theory of Ductility and Creep [in Russian], Mashinostroenie, Moscow (1975).

  28. 28.

    Yu. N. Rabotnov and S. T. Mileiko, Transient Creep [in Russian], Nauka, Moscow (1970).

  29. 29.

    V. I. Kovpak, “Reliable determination of the beginning of the accelerated stage of creep,” Probl. Prochn., No. 12 (1973).

  30. 30.

    L. G. Mukhina, “Calculation of creep characteristics from experimental data using the method of nonparametric equalization,” in: Theoretical-Experimental Method of Studying Creep in Structures [in Russian], KPtI, Kuibyshev (1984).

  31. 31.

    Yu. P. Samarin, Constitutive Equations of Materials with Complex Rheological Properties [in Russian], KGU, Kuibyshev (1979).

  32. 32.

    Theoretical and Theoretical-Empirical Methods of Determining the Load-Carrying Capacity and Life of Machine Elements and Structures. Theoretical-Experimental Method of Determining Creep and Rupture-Strength Parameters for Nonsteady Uniaxial Loading (1st ed.), Gosstandart, Moscow (1982).

  33. 33.

    O. V. Sosnin and O. O. Sosnin, “On thermoplasticity,” Probl. Prochn., No. 12 (1988).

  34. 34.

    O. V. Sosnin and N. G. Torshenov, “Creep and fracture of titanium alloy OT-4 at a constant temperature,” Probl. Prochn., No. 5 (1970).

  35. 35.

    M. V. Baumshtein and A. I. Badaev, “Determining the avalanche region of creep,” Probl. Prochn., No. 5 (1980).

  36. 36.

    V. V. Osasyuk, “Predicting the residual life of structural elements of power-plant equipment after long use,” Author's Abstract of Engineering Doctoral Dissertation, Kiev (1987).

  37. 37.

    V. P. Radchenko and S. V. Kuz'min, “Structural model of damage accumulation and fracture in metals during creep,” Probl. Prochn., No. 11 (1989).

  38. 38.

    V. N. Maklakov, “Connection between strength properties and internal energy density during the creep of structures,” Creep and Rupture Strength [in Russian], KPtI, Kuibyshev (1986).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 172–179, July–August, 1991.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Radchenko, V.P. Energy variant of the uniaxial theory of creep and rupture strength. J Appl Mech Tech Phys 32, 632–640 (1991). https://doi.org/10.1007/BF00851575

Download citation

Keywords

  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic
  • Energy Variant
  • Rupture Strength