Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Friction and heat transfer in turbulent gas flow behind an accelerating piston

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    K. P. Stanyukovich, Unsteady Motion of a Continuous Medium [in Russian], Nauka, Moscow (1971).

  2. 2.

    S. Williams, “Viscous compressible and incompressible gas flow in narrow channels,” AIAA J., No. 1 (1963).

  3. 3.

    L. G. Loitsyanskii, Mechanics of Fluids and Gases [in Russian], Nauka, Moscow (1979).

  4. 4.

    I. P. Ginzburg, Applied Gasdynamics [in Russian], Izd. Leningrad. Gos. Univ., Leningrad (1958).

  5. 5.

    L. V. Komarovskii, “Analytic solution of the problem of piston acceleration in a variable-section channel in the case of nonisentropic gas expansion,” Tr. Tomsk Univ. Sci-Res. Inst. Appl. Math. Mech. [in Russian], Vol. 4, Izd. Tomsk. Gos. Univ., Tomsk (1974).

  6. 6.

    O. F. Vasil'ev and V. I. Kvon, “Unsteady turbulent flow in a tube,” Prikl. Mekh. Tekh. Fiz., No. 6 (1971).

  7. 7.

    G. N. Abramovich, S. Yu. Krasheninnikov, and A. N. Sekundov, Turbulent Flows under the Action of Bulk Forces and Non-self-similarity [in Russian], Mashinostroenie (1975).

  8. 8.

    V. M. Ievlev, Turbulent Motion of High-temperature Continuous Media [in Russian], Nauka, Moscow (1975).

  9. 9.

    V. K. Bulgakov and A. M. Lipanov, “Interaction of turbulence and chemical reaction in the theory of erosive combustion of condensed substances,” Khim. Fiz.,5, No. 4 (1986).

  10. 10.

    B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gasdynamics [in Russian], Nauka, Moscow (1978).

  11. 11.

    C. C. Chieng and B. E. Launder, “On the calculation of turbulent heat transport downstream from an abrupt pipe expansion,” Numerical Heat Transfer,3 (1980).

  12. 12.

    R. S. Amano, “A study of turbulent flow downstream of an abrupt pipe expansion,” AIAA J.,21, No. 10 (1983).

  13. 13.

    A. Sharapov, “Numerical investigation of heat conducting gas flow and unsteady boundary layer parameters,” Questions of Computational and Applied Mathematics [in Russian], No. 1, Inst. Kibern. Akad. Nauk Uzbek SSR, Tashkent (1970).

  14. 14.

    E. P. Bartlett, L. W. Anderson, and R. M. Kendall, “Time-dependent boundary layers with application to gun barrel heat transfer,” Proc. 1972 Heat Transfer and Fluid Mech. Inst., Northridge, CA (1972).

  15. 15.

    M. J. Adams and H. Krier, “Unsteady internal boundary layer analysis applied to gun barrel wall heat transfer,” Int. J. Heat Mass Transfer,24, No. 12 (1981).

  16. 16.

    M. Ohmi, T. Usui, O. Tanaka, and H. Toyama, “Pressure and velocity distributions in pulsating turbulent pipe flow. 2. Experimental investigations,” Bull. JSME,19, No. 134 (1976).

  17. 17.

    V. I. Bukreev and V. M. Shakhin, “Statistically nonstationary turbulent flow in a pipe,” Dep. VINITI, No. 866-81, Feb. 16, 1981, Novosibirsk (1981).

  18. 18.

    J. Laufer, “The structure of turbulence in fully developed pipe flow,” TN No. 1175, NACA, Washington, D. C. (1954).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 96–103, September–October, 1989.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bubenchikov, A.M., Kharlamov, S.N. Friction and heat transfer in turbulent gas flow behind an accelerating piston. J Appl Mech Tech Phys 30, 763–769 (1989). https://doi.org/10.1007/BF00851423

Download citation

Keywords

  • Heat Transfer
  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic
  • Accelerate Piston