Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Two-component pendulum systems with free play

  • 23 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    L. G. Lobas, "Mathematical model of coupled systems with free play," Prikl. Mekh.,20, No. 6, 80–87 (1984).

  2. 2.

    L. G. Lobas, "Theory of circular play of three-component elasticially deformable systems," Prikl. Mekh.,21, No. 11, 104–110 (1985).

  3. 3.

    L. G. Lobas, "Path stability of two-component wheeled vehicle," Prikl. Mekh.,25, No. 4, 104–111 (1989).

  4. 4.

    L. G. Lobas and V. G. Verbitskii, Qualitative and Analytical Methods in the Dynamics of Wheeled Vehicles [in Russian], Naukova Dumka, Kiev (1990).

  5. 5.

    É. N. Sokol, Stability of steady motion of a double physical pendulum," Mat. Met. Fiz.-Mekh. Pol., No. 17, 90–94 (1983).

  6. 6.

    T. G. Strizhak, Methods of Investigating Pendulum-Type Dynamic Systems [in Russian], Nauka, KazSSR, Alma-Ata (1981).

  7. 7.

    M. Cheshankov and M. Slavkova, God., VUZ, Tekh. Mekh.,18, No. 2, 17–26 (1983).

  8. 8.

    J.-D. Jin and V. Matsuzaki, "Bifurcations in a two-degree-of-freedom elastic system with follower forces," J. Sound Vibr.,126, No. 2, 265–277 (1988).

  9. 9.

    J.-D. Jin and V. Matsuzaki, "Stability and bifurcations of a double pendulum subjected to a follower force," AIAA, ASME, ASCE, AHS, and ASC 30th Struct., Struct. Dyn. Mater. Conf. Mobile, AL, April 3–5, 1989, Collect. Techn. Pap., Part 1, Washington (1989), pp. 432–439.

  10. 10.

    E. Lindtner, A. Steindl, and H. Troger, "Stabilitätsverlust der gestreckten Lage eines räumlichen Doppelpendels mit elastischer Endlagerung unter einer Folgelast," Z. Angew. Math. Mech.,67, No. 4, 105–107 (1987).

  11. 11.

    J. W. Miles, "The pendulum from Huygens' horologium to symmetry breaking and chaos," in: Theoretical and Applied Mechanics, Proceedings of the Seventeenth International Congress, Grenoble, August 21–27, 1988, Amsterdam (1989), pp. 193–215.

  12. 12.

    R. Scheidl, H. Troger, and K. Zeman, "Coupled flutter and divergence bifurcation of a double pendulum," Int. J. Nonlinear Mech.,19, No. 2, 163–176 (1984).

  13. 13.

    A. Stribesky and H. Troger, "Globales Verzweigungsverhalten am Beispeil eines längselastischen Doppelpendels unter Folgelast," Z. Angew. Math. Mech.,68, No. 4, 126–128 (1988).

Download references

Additional information

Institute of Mechanics, Ukrainian Academy of Sciences, Kiev. Translated from Prikladnaya Mekhanika, Vol. 29, No. 2, pp. 82–88, February, 1993.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lobas, L.G., Khrebet, V.G. Two-component pendulum systems with free play. Int Appl Mech 29, 157–163 (1993). https://doi.org/10.1007/BF00846992

Download citation

Keywords

  • Free Play
  • Pendulum System