Self-diffusion of14C in polycrystalline β-SiC
Papers
First Online:
- 365 Downloads
- 104 Citations
Abstract
The14C self-diffusion coefficients for both lattice (D lc * ) and grain boundary (D bc * ) transport in high purity CVDβ-SiC are reported for the range 2128 to 2374 K. The Suzuoka analysis technique revealed thatD bc * is 105 to 106 faster thanD bc * ; the respective equations are given by
$$\begin{gathered} D_{I c}^* = (2.62 \pm 1.83) \times 10^8 exp\left\{ { - \frac{{(8.72 \pm 0.14)eV/atom}}{{kT}}} \right\}cm^2 sec^{ - 1} \hfill \\ D_{b c}^* = (4.44 \pm 2.03) \times 10^7 exp\left\{ { - \frac{{(5.84 \pm 0.09)eV/atom}}{{kT}}} \right\}cm^2 sec^{ - 1} \hfill \\ \end{gathered} $$
A vacancy mechanism is assumed to be operative for lattice transport. From the standpoint of crystallography and energetics, reasons are given in support of a path of transport which involves an initial jump to a vacant tetrahedral site succeeded by a jump to a normally occupied C vacancy.
Keywords
Boundary Diffusion Volume Diffusion Diffusion Profile Diffusion Anneal Diffusion Activation EnergyPreview
Unable to display preview. Download preview PDF.
References
- 1.S. Prochazka, Proceedings of the Conference on Ceramics for High Performance Applications, Hyannis, Mass. 1973, edited by J. J. Burke, A. E. Gorum and R. N. Katz (Brook Hill Pub. Co., Boston, 1975) p. 220.Google Scholar
- 2.J. A. Coppola andC. H. McMurtry, presented at the American Chemical Society Symposium, “Ceramics in the Service of Man”, Washington, D.C., 1976.Google Scholar
- 3.
- 4.J. D. Hong, Ph. D. Thesis, North Carolina State University (1978).Google Scholar
- 5.
- 6.Y. A. Vodakov andE. N. Mokhov, “Silicon Carbide, 1973”, edited by R. C. Marshall, J. W. Faust Jr and C. E. Ryan (University of South Carolina Press, Columbia, S. C., 1974) p. 508.Google Scholar
- 7.A. H. G. Demesquite,Acta Cryst. 23 (1967) 610.CrossRefGoogle Scholar
- 8.J. W. Faust, Jr., “Silicon Carbide,” edited by J. R. O'Connor and J. Smiltens (Pergamon Press, New York, 1960) p. 403.Google Scholar
- 9.V. J. Jennings,Mater. Res. Bull. 4 (1969) 5199.Google Scholar
- 10.P. T. B. Shaffer,J. Appl. Phys. 39 (1968) 5332.CrossRefGoogle Scholar
- 11.
- 12.R. F. Davis, J. H. Hong andM. Hon, “Processing of Crystalline Ceramics”, edited by H. Palmour III, R. F. Davis and T. M. Hare (Plenum Press, New York, 1978.)Google Scholar
- 13.J. D. Hong, W. E. Griffin andR. F. Davis,Rev. of Sci. Instruments 49 (1978) 83.CrossRefGoogle Scholar
- 14.J. C. Fisher,J. Appl. Phys. 22 (1951) 74.CrossRefGoogle Scholar
- 15.T. Suzuoka,J. Phys. Soc. Japan,19 (1964) 839.CrossRefGoogle Scholar
- 16.
- 17.P. G. Shewmon, “Diffusion in Solids” (McGraw-Hill, New York, 1963).Google Scholar
- 18.
- 19.
- 20.
- 21.M. H. Hon, Ph. D. Thesis, North Carolina State University (1978).Google Scholar
- 22.
- 23.R. N. Ghoshtagore, Ph. D. Thesis, Massachusetts Institute of Techology (1965).Google Scholar
- 24.
- 25.
- 26.
- 27.D. K. Dawson, L. W. Barr andR. A. Pitt-Pladdy,Brit. J. App. Phys. 17 (1966) 657.CrossRefGoogle Scholar
- 28.
- 29.G. E. G. Hardeman,J. Phys. Chem. Solids 24 (1963) 1223.CrossRefGoogle Scholar
- 30.
- 31.S. Yamada andH. Kuwabara, “Silicon Carbide — 1973” edited by R. C. Marshall, J. W. Faust, Jr and C. E. Ryan (University of South Carolina Press, Columbia, S. C., 1974) p. 305.Google Scholar
- 32.
- 33.G. J. Dienes,J. Appl. Phys. 23 (1952) 11.CrossRefGoogle Scholar
- 34.L. Pauling, “The Chemical Bond” 3rd edn. (Cornell University Press, Ithaca, New York, 1960).Google Scholar
- 35.R. C. Gifkins,Mat. Sci. Eng. 2 (1967) 181.CrossRefGoogle Scholar
- 36.C. Zener, “Imperfections in Nearly Perfect Crystals”, edited by W. Shockley (J. Wiley and Sons, New York, 1952) p. 289.Google Scholar
Copyright information
© Chapman and Hall Ltd. 1979