Urania-yttria solid solution electrodes for high-temperature electrochemical applications
- 68 Downloads
- 15 Citations
Abstract
Measurements of total electrical conductivity on fluorite-type U3O8-Y2O3 (Sc2O3) solid solutions have been made as a function of temperature and U/Y(Sc) ratio. The following compositions were studied: (U0.7Y0.3)O2+x, (U0.6Y0.4)O2+x, (U0.5Y0.5)O2+x, (U0.45Y0.55)O2+x, (U0.4Y0.6)O2+x, (U0.35Y0.65)O2+x, (U0.3Y0.7)O2−x, (U0.5Sc0.5)O2+x and (U0.38Sc0.62)O2+x. Preliminary measurements on the latter two compositions were carried out for comparison purposes. The maximum conductivity value occurred for the U3O8-Sc2O3 solid solutions, and for (U0.7Y0.3)O2+x in the U3O8-Y2O3 system. The conductivity in these fluorite-type solid solutions is mainly electronic, the conduction mechanism being hopping-type. The energy of activation lay between 25 and 40 kJ mol−1. The (U0.3Y0.7)O2−x composition appeared to be an ionic conductor with an activation energy of ∼110 kJ mol−1 below 800 to 850° C. The diffusion of cations of U3O8-Y2O3 into ZrO2-Y2O3 was studied during passage of current: no observable diffusion occurred over the period of current passage (384 h). Attempts were made to determine the anionic contribution to the total conductivity in U3O8-Y2O3 solid solutions using the blocking electrode technique. Results indicated that complete isolation of the specimen-blocking electrode (YSZ) interface from the ambient gases is necessary if such measurements are to be reliable. The diffusion coefficients calculated from the conductivity data using the Nernst-Einstein relation were two orders of magnitude higher than those obtained by a direct method.
Keywords
Transport Number Platinum Foil Chemical Diffusion Coefficient Alumina Ring Ionic Transport NumberPreview
Unable to display preview. Download preview PDF.
References
- 1.
- 2.
- 3.B. H. P. Ltd. Australia, CRL Reports on HighTemperature Fuel Cells (1969–72), Private communication.Google Scholar
- 4.F. J. Rohr, in “Solid Electrolytes”, edited by P. Hagenmuller and W. van Gool (Academic Press, London, New York, 1978) p. 431.CrossRefGoogle Scholar
- 5.“Proceedings of the Workshop on High Temperature Solid Oxide Fuel Cells”, edited by H. S. Isaacs, S. Srinivasan and I. L. Harry (U.S. Dept. of Energy BNL 50756/TID-4500, 1977).Google Scholar
- 6.B. C. H. Steele,“Electrode Processes in Solid State Ionics”, edited by M. Kleitz and J. Dupuy (Reidel, Dordrecht, 1976) p. 367.CrossRefGoogle Scholar
- 7.
- 8.H. S. Spacil andK. W. Browall,ibid. 121, (1974) Abstr. 231 (The Electrochemical Soc. Inc., New York Meeting, New York, 1974).Google Scholar
- 9.A. Aypar,Technical J. 1 (1974) 137.Google Scholar
- 10.T. Takahashi, in “Physics of Electrolytes”, Vol. 2, edited by J. Hladik (Academic Press, London, New York, 1972) p. 989.Google Scholar
- 11.J. W. Patterson,J. Electrochem. Soc. 118 (1971) 1033.CrossRefGoogle Scholar
- 12.H. Tannenberger, H. Schachner andP. Kovacs,Proc. J. Intl. Etude Piles Combust. 1-III (1965) 19.Google Scholar
- 13.J. W. Patterson, E. C. Bogren andR. A. Rapp,J. Electrochem. Soc. 114 (1967) 752.CrossRefGoogle Scholar
- 14.
- 15.
- 16.
- 17.R. M. Dell andA. Hooper, in “Solid Electrolytes”, edited by P. Hagenmuller and W. van Gool (Academic Press, London, New York, 1978) P. 291.CrossRefGoogle Scholar
- 18.H. Tannenberger andH. Siegert, in “Fuel Cell Systems — II”, Advances in Chemistry Series, Vol. 90 (American Chemical Society, Washington, D.C., 1969) 281.Google Scholar
- 19.
- 20.D. W. White,Rev. Energ. Primaire 2 (1966) 10.Google Scholar
- 21.C. S. Tedmon, Jr, H. S. Spacil andS. P. Mitoff,J. Electrochem. Soc. 116 (1969) 1170.CrossRefGoogle Scholar
- 22.
- 23.
- 24.
- 25.J. S. Anderson, I. F. Ferguson andL. E. J. Roberts,J. Inorg. Nucl. Chem. 1 (1955) 340.CrossRefGoogle Scholar
- 26.
- 27.E. Summerville, Ph.D. Thesis, The Flinders University of South Australia (1973).Google Scholar
- 28.
- 29.W. Trzebiatowski andR. Horyn,Bull. De L'Académie Polonaise Des Sciences XIII (1975) 303.Google Scholar
- 30.S. P. S. Badwal, Ph. D. Thesis, The Flinders University of S. A., Australia (1977).Google Scholar
- 31.
- 32.
- 33.
- 34.B. H. S. Day,Metals Australia 5 (1973) 34.Google Scholar
- 35.R. H. Rousselot,Metal finishing 57 (1959) 56.Google Scholar
- 36.L. Heyne,N.B.S. (US) Spec. Publ. No. 296 (1967) 149.Google Scholar
- 37.
- 38.
- 39.R. N. Blumenthal andJ. E. Laubach, “Anistropy in Single-Crystal Refractory Compounds”, edited by W. Vahldiek and S. A. Mersol (Plenum Press, New York, 1968) p. 138.Google Scholar
- 40.
- 41.R. N. Blumenthal, P. W. Lee andR. J. Panlener,J. Electrochem. Soc. 118 (1971) 123.CrossRefGoogle Scholar
- 42.
- 43.R. N. Blumenthal, R. J. Panlener andJ. E. Garnier,J. Phys. Chem. Solids 36 (1975) 1213.CrossRefGoogle Scholar
- 44.
- 45.
- 46.
- 47.
- 48.R. K. Willardson andJ. W. Moody, “Uranium Dioxide”, edited by S. Belle (USAEC, Washington, D.C., 1961) p. 243.Google Scholar
- 49.
- 50.S. Amelinckx et al., “Physical Properties of UO2 Single Crystals” (centre Etude Energie Nucl., Mol, EUR 1414. e, 1965).Google Scholar
- 51.J. F. Wadier, CAE-R4507 (Atomic Energy Commission, C.E.N., Fontenay-aux-Roses, France 1973).Google Scholar
- 52.E. Stadlbauer, U. Wichmann, U. Lott andC. Keller,J. Solid State Chem. 10 (1974) 341.CrossRefGoogle Scholar
- 53.
- 54.
- 55.H. Obayashi andT. Kudo, in “Solid State Chemistry of Energy Conversion and Storage”, Advances in Chemistry Series, Vol. 163, edited by J. B. Goodenough and M. S. Whittingham Chemical Society, Washington, D.C., 1977) p. 316.Google Scholar
- 56.A. B. Lidiard,J. Nucl. Mater. 19 (1966) 106.CrossRefGoogle Scholar
- 57.
- 58.
- 59.J. R. Johnson andH. G. Sowman in “UO2 Properties and Nuclear Applications”, edited by J. Belle, (U.S. Atomic Energy Commission, Washington D.C. 1961) p. 321.Google Scholar
- 60.R. J. Feriauf, in “Physics of Electrolytes”, edited by J. Haldik (Academic Press, London 1972) p. 1103.Google Scholar
- 61.R. J. Feriauf,J. Appl. Phys. 33 (1962) 494.CrossRefGoogle Scholar
- 62.
- 63.
- 64.