Advertisement

Journal of Materials Science

, Volume 14, Issue 10, pp 2335–2342 | Cite as

The Si-O bonding in Na2O-TiO-SiO2 and K2O-TiO2-SiO2 glasses as studied by SiKβ X-ray fluorescence and infra-red absorption spectroscopy

  • Sumio Sakka
  • Hitoshi Hotta
Papers

Abstract

The SiKβ fluorescence X-ray and infra-red absorption spectra of Na2O-TiO2-SiO2 and K2O-TiO2-SiO2 glasses have been measured in order to study the Si-O bonding as a function of the composition of glass. The chemical shifts of the SiKβ peak relative to that of silica glass [Δλ=λ(SiO2)-λ(specimen)>0] and the wavenumbers of the infra-red absorption peaks around 950cm−1 and 1100 cm−1 have been determined from the spectra. The SiKβ chemical shift in both series of glasses increased with increasing total content of R2O and TiO2 and with decreasing ratio of TiO2/(K2O+TiO2), where R2O represents Na2O or K2O. The infra-red peaks around 950 cm−1 and 1100 cm−1 shifted towards lower wavenumbers with increasing total content of R2O and TiO2 and with decreasing ratio of TiO2/(R2O+TiO2). These experimental facts were interpreted as showing that the Si-O bond in glass was weakened as the total content of R2O and TiO2 increased and that the Si-O bond was weakened by R2O more than by TiO2.

Keywords

TiO2 Chemical Shift Total Content Silica Glass GeO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bh. V. Janakirama Rao,Phys. Chem. Glasses 4 (1963) 22.Google Scholar
  2. 2.
    N. Iwamoto, Y. Tsunawaki, M. Fujii andT. Hattori,J. Non-Cryst. Solids 18 (1975) 303.CrossRefGoogle Scholar
  3. 3.
    A. A. Loshmanov, V. N. Sigaev, R. Ya. Khodakovskaya, N. M. Pavlushkin andI. I. Yamzin, Tenth International Congress on Glass, Kyoto, No. 12 (Japanese Ceramic Society, Kyota, 1974) p. 9.Google Scholar
  4. 4.
    K. Takahashi, N. Mochida andY. Yoshida,J. Ceram. Soc. Japan 85 (1977) 330.Google Scholar
  5. 5.
    Y. S. Bobovich,Optika i Spekroskopiya 14 (1963) 647.Google Scholar
  6. 6.
    E. Hamilton andG. Cleek,J. Res. Nat. Bur. Stand. 61 (1958) 89.CrossRefGoogle Scholar
  7. 7.
    G. Bayer, O. Flörke, W. Hoffmann andH. Scheel,Glastech. Ber. 39 (1966) 242.Google Scholar
  8. 8.
    M. Manghnani,J. Amer. Ceram. Soc. 55 (1972) 360.CrossRefGoogle Scholar
  9. 9.
    A. Johnston andC. Babcock,ibid. 58 (1975) 85.CrossRefGoogle Scholar
  10. 10.
    H. Maruyama, N. Soga andM. Kunugi, 16th Symposium on Glass, (Japanese Ceramic Society, Osaka, 1975) pp. 42–6Google Scholar
  11. 11.
    E. White andG. Gibbs,Amer. Mineral. 52 (1967) 985.Google Scholar
  12. 12.
    Idem, ibid. 54 (1969) 931.Google Scholar
  13. 13.
    C. Dodd andG. Glen,J. Appl. Phys. 39 (1968) 5377.CrossRefGoogle Scholar
  14. 14.
    Idem, J. Amer. Ceram. Soc. 53 (1970) 322.CrossRefGoogle Scholar
  15. 15.
    S. Sakka andK. Matusita,J. Non-Cryst. Solids 22 (1976) 57.CrossRefGoogle Scholar
  16. 16.
    S. Sakka andA. Senga,J. Mater. Sci. 13 (1978) 505.CrossRefGoogle Scholar
  17. 17.
    G. Wiech, E. Zopf, H.-U. Chun andR. Bruckner,J. Non-Cryst. Solids 21 (1976) 251.CrossRefGoogle Scholar
  18. 18.
    H. Toyuki,J. Ceram. Soc. Japan 85 (1977) 554.Google Scholar
  19. 19.
    M. Manghnani, J. Ferraro andL. Basile,Appl. Spectroscopy 28 (1974) 256.CrossRefGoogle Scholar
  20. 20.
    S. Sakka,Bull. Inst. Chem. Res., Kyoto Univ. 49 (1971) 349.Google Scholar
  21. 21.
    J. Ferraro andM. Manghnani,J. Appl. Phys. 43 (1972) 4595.CrossRefGoogle Scholar
  22. 22.
    J. Sweet andW. White,Phys. Chem. Glasses 10 (1969) 246.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • Sumio Sakka
    • 1
  • Hitoshi Hotta
    • 1
  1. 1.Faculty of EngineeringMie UniversityMie-KenJapan

Personalised recommendations