Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Distance-dependent quenching of Nile Blue fluorescence byN,N-diethylaniline observed by frequency-domain fluorometry

Abstract

Fluorescence quenching of Nile Blue by amines is thought to be due to electron transfer to the excited dye molecule from the amine electron donor. We used electron transfer quenching of Nile blue byN,N-diethylaniline in propylene glycol as a model system for an interaction which depends exponentially on distance. We investigated the time dependence of the presumed distance-dependent process using gigahertz harmonic-content frequency-domain fluorometry. The frequency-domain data and the steady-state quantum yield were analyzed globally based on either the Smoluchowski-Collins-Kimball radiation boundary condition (RBC) model or the distancedependent quenching (DDQ) model, in which the rate of quenching depends exponentially on the flourophore-quencher distance. We performed a global analysis which included both the frequencydomain time-resolved decays and the steady-state intensities. The latter were found to be particularly sensitive to the model and parameter values. The data cannot be satisfactorily analyzed using the RBC model for quenching. The analysis shows the excellent agreement of the DDQ model with the experimental data, supporting the applicability of the DDQ model to describe the quenching by the electron transfer process, which depends exponentially on the donor-acceptor distance.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G. J. Kavarnos (1993)Fundamentals of Photo-Induced Electron Transfer, VCH, New York.

  2. 2.

    M. A. Fox and M. Chainon (Eds.) (1988)Photo-Induced Electron Transfer, Parts A-D, Elsevier, Amsterdam.

  3. 3.

    J. Mattay (Ed.) inTopics in Current Chemistry, Vol. 156 (1990),Vol. 158 (1990),Vol. 159 (1991), andVol. 163 (1992), Springer-Verlag, Berlin/Heidelberg/New York.

  4. 4.

    R. A. Marcus and N. Sutin (1985)Biochim. Biophys. Acta 811, 265–322.

  5. 5.

    J. R. Boltonet al. (Eds.) (1991) Electron transfer in inorganic, organic and biological systems,Advances in Chemistry Series 228, Am. Chem. Soc., Washington, DC.

  6. 6.

    N. Matagaet al. (Eds.) (1992)Dynamics and Mechanisms of Photo-Induced Electron Transfer and Related Phenomena, Elsevier, Amsterdam.

  7. 7.

    D. Rehm and A. Weller (1969)Ber. Bunsenges. Phys. Chem. 69, 834–389.

  8. 8.

    D. Rehm and A. Weller (1970)Israel J. Chem., 21st Farkas Memorial Symp. 8, 259–271.

  9. 9.

    P. Suppan (1986)J. Chem. Soc. Faraday Trans. 1 82, 509–511.

  10. 10.

    M. J. Weaver (1992)Chem. Rev. 92, 463–480.

  11. 11.

    G. B. Dutt and N. Periasamy (1991)J. Chem. Soc. Faraday Trans. 87, 3815–3820.

  12. 12.

    H. Heitele (1993)Angew. Chem. Int. Engl. 32, 359–377, and references therein.

  13. 13.

    M. Tachiya (1993)J. Phys. Chem. 97, 5911–5916.

  14. 14.

    T. Asahi, M. Ohkohchi, and N. Mataga (1993)J. Phys. Chem. 97, 13132–13137.

  15. 15.

    Y. Nagasawa, A. P. Yavtsev, K. Tominaga, A. E. Johnson, and K. Yoshikawa (1993)J. Am. Chem. Soc. 115, 7922–7923.

  16. 16.

    K. Yoshikawa, A. Yavtsev, Y. Nagasawa, H. Kandori, A. Donhal, and K. Kemnitz (1993)Pure Appl. Chem. 65, 1671–1675.

  17. 17.

    T. Kobayashi, Y. Takagi, H. Kandori, K. Kemnitz, and K. Yoshikawa (1991)Chem. Phys. Lett. 180, 416–422.

  18. 18.

    H. Kandori, K. Kemnitz, and K. Yoshikawa (1992)J. Phys. Chem. 36, 8042–8048.

  19. 19.

    K. Yoshihara, Y. Nagasawa, A. Yartsev, S. Kumazaki, H. Kandori, A. E. Johnson, and K. Tominaga (1994)J. Photochem. Photobiol. A Chem. 80, 169–175.

  20. 20.

    T. L. Nemzek and W. R. Ware (1975)J. Chem. Phys. 62, 477–489.

  21. 21.

    N. Joshi, M. L. Johnson, I. Gryczynski, and J. R. Lakowicz (1987)Chem. Phys. Lett. 135 (3), 200–207.

  22. 22.

    J. R. Lakowicz, J. Kuśba, H. Szmacinski, M. L. Johnson, and I. Gryczynski (1993)Chem. Phys. Lett. 206 (5,6), 455–463.

  23. 23.

    J. R. Lakowicz, B. Zelent, I. Gryczynski, J. Kuśba, and M. L. Johnson (1994)Photochem. Photobiol. 60, 205–214.

  24. 24.

    R. A. Marcus (1956)J. Chem. Phys. 24, 966–978.

  25. 25.

    R. A. Marcus (1964)Annu. Rev. Phys. Chem. 15, 155–196.

  26. 26.

    R. A. Marcus (1982)Faraday Discuss. Chem. Soc. 74, 7–15.

  27. 27.

    S. V. Camyshan, N. P. Gritsan, V. V. Korolev, and N. M. Bazhin (1990)Chem. Phys. 142, 59–68.

  28. 28.

    A. Namiki, N. Nakashima, and K. Yoshihara (1979)J. Chem. Phys. 71, 925–930.

  29. 29.

    N. J. Turro (1978)Modern Molecular Photochemistry, Benjamin/Cummings, Menlo Park, CA, pp. 305–311.

  30. 30.

    D. D. Eads, B. G. Dismer, and G. R. Fleming (1990)J. Chem. Phys. 93 (2), 1136–1148.

  31. 31.

    J. Kuśba and B. Sipp (1988)Chem. Phys. 124, 223–226.

  32. 32.

    J. Kuśba and J. R. Lakowicz (1994) in M. L. Johnson and L. Brand (Eds.),Methods in Enzymology, Numerical Computer Methods, Academic Press, New York, Part B, Vol. 240, pp. 216–262.

  33. 33.

    J. Kuśba and B. Sipp (1985)J. Luminesc. 33, 255–260.

  34. 34.

    J. R. Lakowicz, G. Laczko, and I. Gryczynski (1986)Rev. Sci. Instrum. 57, 2499–2506.

  35. 35.

    G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz (1990)Rev. Sci. Instrum. 61, 2331–2337.

  36. 36.

    G. Briegleb and J. Czekalla (1959)Z. Elektrochem. 63, 6–12.

  37. 37.

    B. Zelent, J. Kuśba, I. Gryczynski, and J. R. Lakowicz (1995)Appl. Spectrosc. 49, 43–50.

  38. 38.

    J. Kuśba, I. Gryczynski, H. Szmacinski, M. L. Johnson, and J. R. Lakowicz (1992)SPIE 1640, 46–57.

  39. 39.

    M. Tachiya and S. Murata (1992)J. Phys. Chem. 96, 8441–8444.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lakowicz, J.R., Zelent, B., Kuśba, J. et al. Distance-dependent quenching of Nile Blue fluorescence byN,N-diethylaniline observed by frequency-domain fluorometry. J Fluoresc 6, 187–194 (1996). https://doi.org/10.1007/BF00732821

Download citation

Key words

  • Fluorescence
  • quenching
  • electron transfer
  • time-resolved fluorescence
  • frequency-domain fluorometry