Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Resonant interactions of modes in coronal magnetic flux tubes


Nonlinear resonant interactions of different kinds of fast magnetosonic (FMS) waves trapped in the inhomogeneity of a low-β plasma density, stretched along a magnetic field (as, for example, in coronal loops) are investigated. A set of equations describing the amplitudes of interactive modes is derived for an arbitrary density profile. The quantitative characteristics of such interactions are found. The decay instability of the wave with highest frequency is possible in the system. If amplitudes of interactive modes have close values, the long-period temporal and spatial oscillations are in the system.

For a quantitative illustration, the parabolic approximation of the transverse density profile has been chosen. Dispersion relations of FMS waves trapped in a low-β plasma slab with a parabolic transverse density profile are found. The transverse structure of the waves in this case can be expressed through Hermitian polynomials. The interaction of kink and sausage waves is investigated. The sausage wave, with a sufficiently large amplitude, may be unstable with respect to the decay into two kink waves, in particular. The spatial scale of a standing wave structure and the time spectrum of radiation are formed due to the nonlinear interactions of loop modes which contain information about the parameters of the plasma slab.

This is a preview of subscription content, log in to check access.


  1. Adams, M. J.: 1981,An Introduction to Optical Waveguides, John Wiley and Sons, New York.

  2. Edwin, P. M. and Roberts, B.: 1982,Solar Phys. 76, 239.

  3. Edwin, P. M. and Roberts, B.: 1983,Solar Phys. 88, 179.

  4. Edwin, P. M. and Roberts, B.: 1986,Wave Motion 8, 151.

  5. Edwin, P. M. and Roberts, B.: 1988,Astron. Astrophys. 192, 343.

  6. Karpliuk, K. S., Kolisnichenko, Y. I., and Oraevsky, V. N.: 1968,Ukrainskij Fizich. Zh. 13, 1072 (in Russian).

  7. Karpliuk, K. S., Kolisnichenko, Y. I, and Oraevsky, V. N.: 1970,Nucl. Fusion 10, 3.

  8. Merzljakov, E. G. and Ruderman, M. S.: 1986,Solar Phys. 103, 259.

  9. Murawski, K. and Roberts, B.: 1993a,Solar Phys. 144, 225.

  10. Murawski, K. and Roberts, B.: 1993b,Solar Phys. 145, 65.

  11. Oraevsky, V. N.: 1983, in A. A. Galeev and R. Sudan (eds.),Foundations of Plasma Physics, Nauka, Moscow.

  12. Petrukhin, N. and Fajnstejn, S.: 1984,Astron. Zh. 61, 348 (in Russian).

  13. Roberts, B.: 1981,Solar Phys. 69, 27.

  14. Roberts, B., Edwin, P. M., and Benz, A. O.: 1984,Astrophys. J. 279, 857.

  15. Sahyouni, W., Zhelyazkov, I., and Nenovski, P.: 1988,Solar Phys. 115, 17.

  16. Ulmschneider, P., Zahringer, K., and Musielak, Z.: 1991,Astron. Astrophys. 241, 625.

  17. Weiland, J. and Wilhelmsson, H.: 1976,Coherent Nonlinear Interactions of Waves in Plasma, Pergamon Press, Oxford.

  18. Wentzel, D. G.: 1974,Solar Phys. 39, 129.

  19. Wentzel, D. G.: 1976,Solar Phys. 50, 343.

  20. Wentzel, D. G.: 1977,Solar Phys. 52, 163.

  21. Zhelyazkov, I., Murawski, K., Goossens, M., Nenovski, P., and Roberts, B.: 1994,J. Plasma Phys. 51, 291.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nakariakov, V.M., Oraevsky, V.N. Resonant interactions of modes in coronal magnetic flux tubes. Sol Phys 160, 289–302 (1995).

Download citation


  • Interactive Mode
  • Flux Tube
  • Coronal Loop
  • Hermitian Polynomial
  • Resonant Interaction